es 3期 第15节-词项查询与跨度查询实战运用
#### 1.Elasticsearch是数据库,不是普通的Java应用程序,传统数据库需要的硬件资源同样需要,提升性能最有效的就是升级硬件。
#### 2.Elasticsearch是文档型数据库,不是关系型数据库,不具备严格的ACID事务特性,任何企图直接替代严格事务性场景的应用项目都会失败!!!
##### 索引字段与属性都属于静态设置,若后期变更历史数据需要重建索引才可生效
##### 对历史数据无效!!!!
##### 一定要重建索引!!!!
#### 全文文本概念
### 概念介绍
## 1.文章语句分词
## 2.分词之后,支持基于分词检索
## 3.分词算法很多,分词领域很深入
## 4.基于倒排索引算法-Inverted-Index
## 5.分词检索的打分算法TF/IDF=>BM25
## 6.字段类型仅限于text类型
### Term 精确词项概念
# Term词项概念整个语句文字分为一个词
# 1.主要是keyword类型,其余非text字段部分可用2.数据内容有长度限制(2的16次方字节)
## 词项精确查询介绍
# l.Term
# 2.Terms
# 3.Terms Lookup
# 4.Terms set
## 是否需要分值计算
# query:分值计算
# filter:无需分值计算
# 准备数据DELETE kibana_sample_data_flights_term
POST _reindex
{"source": {"index": "kibana_sample_data_flights"},"dest": {"index": "kibana_sample_data_flights_term"}
}
# 查不出来,因为Dest是text类型
GET kibana_sample_data_flights_term/_search
# 查不出来,因为Dest是text类型
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"must": [{"term": {"Dest": {"value": "Venice Marco Polo Airport"}}}]}}
}
# 使用Dest.keyword查出来,既然是精确查询也可以不必用must,使用filter
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"term": {"Dest.keyword": {"value": "Venice Marco Polo Airport"}}}]}}
}
# 去掉一个Airport就查询不出来,注意区分一整个词和分词的区别
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"term": {"Dest.keyword": {"value": "Venice Marco Polo"}}}]}}
}
# Airport 改为小写的 airport 查询不出来,使用keywod时候es不会做任何处理
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"term": {"Dest.keyword": {"value": "Venice Marco Polo airport"}}}]}}
}
# 使用term检索数值类型,原则上非text类型都能用term检索
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"term": {"FlightDelayMin": {"value": 30}}}]}}
}
# 使用range效率没有term高,es对数值类型有两套存储检索方式
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"range": {"FlightDelayMin": {"gte": 20,"lte": 36}}}]}}
}
# case_insensitive, ASCII 是否区分大小写,取值范围true/false,默认false,7.10.0版本之后增加
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"bool": {"filter": [{"term": {"OriginCityName.keyword": {"value": "warsaw","case_insensitive": true}}}]}}
}
### terms查询
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"bool": {"filter": [{"terms": {"OriginCityName.keyword": ["Zurich","Warsaw"]}}]}}
}
## terms lookup查询
# 基于指定某条数据的词项作为输入值,生成词项查询条件
# 等同于应用中反向查询某个索引数据,作为输入源
# 非常适用于比较同类型数据,避免应用中二次查询
## 查询参数
# terms,查询关键字入口,查询表达式入口
# index,指定输入源索引
# id,指定输入源 数据 id
# path,指定输入源字段路径,特别要注意对象类型数据,以及层次
# routing,可指定输入源数据的路由标签
GET kibana_sample_data_ecommerce/_search
GET kibana_sample_data_ecommerce/_search
{"track_total_hits": true,"query": {"terms": {"sku": {"index": "kibana_sample_data_ecommerce","id": "9oTR0Y8BbWz2Sn6Eg4wZ","path": "sku","routing":"9oTR0Y8BbWz2Sn6Eg4wZ"}}}
}
## terms_set
# terms_set 也是多个输入值查询,类似与 terms查询,在属性条件上有更多的选择。
# 期望查询的字段的词数量与内容完全符合,而不是只命中其中一个,提供了一种字段数据与字段数据长度自主比较的能力。
## 查询参数
# terms_set,关键字,查询表达式
# terms,关键字,输入查询内容的词数组
# minimum should match field,关键字,指定一个数值类字段,要求输入的搜索内容必须与此值相等
# minimum should match script,关键字,通过脚本计算获取一个字段的长度数值
# boost,关键字,分值加权
GET kibana_sample_data_ecommerce/_search
# 重新准备新数据,使用脚本增加一个manufacturer_count字段,数据来源是manufacturer的长度
POST _reindex
{"source": {"index": "kibana_sample_data_ecommerce"},"dest": {"index": "kibana_sample_data_ecommerce_term"},"script": {"source": """ctx._source.manufacturer_count = ctx._source.manufacturer.length;"""}
}
# terms 查询匹配数量与manufacturer_count一致的数据
GET kibana_sample_data_ecommerce_term/_mappings
GET kibana_sample_data_ecommerce_term/_search
# terms 查询匹配数量与manufacturer_count一致的数据
GET kibana_sample_data_ecommerce_term/_search
{"track_total_hits": true,"query": {"terms_set": {"manufacturer.keyword": {"terms": ["Elitelligence","Oceanavigations","Champion Arts","Pyramidustries"],"minimum_should_match_field": "manufacturer_count"}}}
}
# terms 查询匹配数量与脚本返回一致的数据
GET kibana_sample_data_ecommerce_term/_search
{"track_total_hits": true,"query": {"terms_set": {"manufacturer.keyword": {"terms": ["Elitelligence","Oceanavigations","Champion Arts","Pyramidustries"],"minimum_should_match_script": {"source":"""doc['manufacturer.keyword'].length;"""}}}}
}
## Fuzzy 容错查询,非高效率查询
# 有很多应用场景,我们对于输入的内容并无严格的校验,导致入库的内容有错别字,此时需要一定的纠错查询,ES 针对此需求,设计了糊纠错查询。
# fuzzy 查询是一种非常消耗 CPU 资源的查询方式,主要要海量的计算,应该尽量避免或者缩短差值
## 查询参数
# fuzzy,关键字,查询表达式
# value,关键字,查询输入的内容单词,本质应该输入一个错误的词项
# fuzziness,关键字,容错的字符数量,建议设置为严格的数字,取值范围数字或者“AUTO”
# max_expansions,关键字,计算的容错词项数量,默认50,尽量控制这个数量!! 组,建议设置更低,性能影响巨大
# prefix_length,关键字,控制容错词的起始位置,从左开始,设置的值应该小于 value 的字符长度,建议设置的更加精确,性能更好
# transpositions,关键字,控制字符前后位置对调来纠错查询,取值范围 true/false,默认 true
# boost,关键字,分值加权
# rewrite,重写查询表达式,此值目前不过渡深入,属于资深人员学习掌握
GET kibana_sample_data_flights_term/_search
# 查询 Washington, 故意把最后一个字母写错Washingtom,可以查出来
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"bool": {"must": [{"fuzzy": {"DestCityName.keyword": {"value": "Washingtom"}}}]}}
}
# 查询 错误的 Washington, Washingtomm 并设置fuzziness数量为1查不出来,改为2就可以查出来了
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"bool": {"must": [{"fuzzy": {"DestCityName.keyword": {"value": "Washingtomm","fuzziness":1}}}]}}
}
## prefix 前缀查询,类说mysql 的like语句
# 基于词项的前缀内容自动匹配后面的内容,只要符合就全部查询出来
## 查询参数
# prefix,关键字,查询表达式
# value,关键字,输入的前缀字符内容
# rewrite,重写参数
# case_insensitive,大小写敏感
# 查询Washington的前缀
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"bool": {"must": [{"prefix": {"DestCityName.keyword": {"value": "Washing"}}}]}}
}
## wildcard,通配符查询,基于通配符"*"模糊查询
# ES7.9版本推出了 wildcard 字段类型,基于 ngram 算法,检索效率相比"*"的查询要高
## 查询参数
# wildcard,关键字,查询表达式
# value,关键字,查询输入内容,内容可以采用通配符方式
# boosts,关键字,分值加权
# rewrite,重写表达式
# case_insensitive,大小写敏感
# 在这个索引中DestCityName是text类型,使用通配时要定义成wildcard类型最好
GET kibana_sample_data_flights_term/_mappings
# 通配查询Washington
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"wildcard": {"DestCityName.keyword": {"value": "*ashington"}}}
}
## exist 逻辑查询
# ES 字段是可以动态扩展的,常规下无任何限制,导致在数据查询时,会造成部分数据字段缺失,从而查询错误,此判断可以有效过滤筛选此类数据
GET kibana_sample_data_ecommerce,kibana_sample_data_ecommerce_term/_search
{"track_total_hits":true,"query":{"exists": {"field": "manufacturer_count"}}
}
## ids查询,本质上等同于MGET
GET kibana_sample_data_ecommerce_term/_doc/9oTR0Y8BbWz2Sn6Eg4wZ
GET kibana_sample_data_ecommerce_term/_search
{"query":{"ids": {"values": ["9oTR0Y8BbWz2Sn6Eg4wZ","94TR0Y8BbWz2Sn6Eg4wZ"]}}
}
// 有限制字符串长度,默认512字节
GET kibana_sample_data_ecommerce_term/_search
{"query":{"terms": {"_id": ["9oTR0Y8BbWz2Sn6Eg4wZ","94TR0Y8BbWz2Sn6Eg4wZ"]}}
}
## range 数值范围查询
# 查询参数
# range,关键字,查询表达式
# gte,关键字,范围值
# # # gt,关键字,范围值
# # lte,关键字,范围值
# lt,关键字,范围值
# boost,关键字,分值加权
# relation,关键字,范围查询关系,针对xxx_range 范围字段才有效
# 数值范围查询
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"range": {"FlightDelayMin":{"gte": 10,"lte": 20,"boost": 1}}}
}
## 时间范围查询
# date,时间是一种特殊的数值类型,还必须考虑到时区,所以建议任何时候都必须使用UTC格式,否则容易出现问题
# range,关键字,查询表达式
# time zone,关键字,时区表达式,增加时区或者减少时区
# 查询某个时间范围类的航班信息,时间范围支持固定时间,也支持动态计算类型
# 查询固定时间
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"range": {"timestamp":{"time_zone": "+00:00", "gte":"2024-03-20T12:09:35","lte": "2024-07-20T12:09:35","boost": 2}}}
}
# 查询动态时间
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"range": {"timestamp":{"time_zone": "+00:00", "gte":"now-200d/d","lte": "now","boost": 2}}}
}
## ragexp 正则表达式查询,慎用或者禁用,容易出现性能问题!!!有通配符的已经足够了
# 查询参数
# regexp,关键字,查询表达式
# values,关键字,输入内容包括查询表达式
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query":{"regexp": {"DestCityName.keyword":{"value": "Man.*"}}}
}
## 词项限制
# terms查询字段数量限制,超过查询会报错,一般也不会超过
# 此设置属于动态设置,可临时修改
# 字段数量限制,默认 65535index.max terms count:65536
### span 跨度查询,全文本查询使用,高级查询,非必须掌握
# span,跨度查询,基于分词词项的精确位置,控制问隔,设定相似度来执行,相比match 匹配类查询,提供了更加底层灵活的查询机制,同时也是非常复杂。
# span,也提供了多种跨度查询方式
# 默认分词会转成小写
POST _analyze
{"text":["Hello David so Cool"]
}
## span_term
# span term 等同与 term 查询,区别在于前者是应用在 text类型中,后者是在 keyword 类型
# span term 单独查询仅仅是为了展示,目的是为了后续的关系查询准备
# 查询参数
# span term,关键字,查询表达式
# value,关键字,输入值,注意,默认standard分词下,此处采用统一会转化成小写
# boost,关键字,分值加权
# 大写开头查不出来,注意大小写
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"span_term": {"Origin": {"value": "edmonton"}}}
}
## span_first
# span_first,跨度第一个词搜索,词项位置属于靠前,从左往右
# 查询参数
# span_first,关键字,查询表达式
# span_term,关键字,指定其中跨度搜索的字段
# end,关键字,控制搜索词项内容的距离,最大位置
# 搜索目的地机场,名字中包含“international”,且从第1个位置不超过2个词;修改查询条件,对比前后查询的结果与数据量。
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"span_first": {"match": {"span_term": {"Dest": "international"}},"end": 2}}
}
## span near
# span_near,跨度相近位置查询
# 查询参数
# span_near,关键字,查询表达式
# clauses,关键字,组合多个跨度查询
# slop,多个跨度条件直接的间隔
# in_order,多个跨度查询是否按照顺序进行,取值范围true/false
# 搜索目的机场包含“charlotte”与“international“,且中间间隔不超过1个词项,必须按照顺序
GET kibana_sample_data_flights_term/_search
{"query": {"span_near": {"clauses": [{"span_term": {"Dest": {"value": "vienna"}}},{"span_term": {"Dest": {"value": "international"}}}],"slop": 1,"in_order": true}}
}
## span_or
# span_or,多个跨度词项组合,关系是 or,只要其中任意的满足查询即可
# 查询参数
# span_or,关键字
# clauses,关键字,查询表达式,组成多个跨度查询
# span_term,关键字,跨度查询,必须所有的跨度查询,字段指向一致
GET kibana_sample_data_flights_term/_search
{"query": {"span_or": {"clauses": [{"span_term": {"Dest": {"value": "airport"}}},{"span_term": {"Dest": {"value": "international"}}},{"span_term": {"Dest": {"value": "pisa"}}}]}}
}
## span not
# span_not,组合多个跨度查询,包含其中跨度,不包含其中部分跨度
# 查询参数
# span_not,关键字
# include,关键字,包含
# exclude,关键字,不包含
# 查询目的地机场,词项包含“internationa!”,不包含“Spokane”的航班信息
GET kibana_sample_data_flights_term/_search
{"query": {"span_not": {"include": {"span_term": {"Dest": {"value": "international"}}},"exclude": {"span_term": {"Dest": {"value": "spokane"}}}}}
}
## span_multi
# span_multi,组合多种查询方式,
# 查询参数
# span_multi,关键字,查询表达式
# match,关键字,查询表达式,prefix、term、range、wildcard,fuzzy,参考 term 领域的查询方式
# 搜索目的地机场,词项前缀包括”edmonton“的航班信息
GET kibana_sample_data_flights_term/_search
{"query": {"span_multi": {"match": {"prefix": {"Dest": {"value": "edmonton"}}}}}
}
## span_containing
# span containing,组合多种跨度查询;little 优先,big次之
# 组合多个条件检索,仅仅返回 little 部分数据
## span_within
# span within,组合多种跨度查询;big优先,little次之
# 组合多个条件检索,仅仅返回 big 部分数据
## field_masking_span
# field_maskingspan,组合多种跨度查询,带有一点伪装的特性。
# 跨越多个字段组合查询
## Specialized 特殊查询
# script
# script,脚本是一种非常灵活的查询方式,同时背后也是有性能代价的若脚本查询的字段需要更多的操作计算,建议可以采用runtime字段方式
# 查询参数
# script,脚本查询表达式入口
# source,脚本内容,必须符合 bool类型;脚本采用painless
# params,输入值参数
# 查询电商信息数据,依据星期数,过滤返回结果
GET kibana_sample_data_ecommerce/_search
{"track_total_hits": true,"query": {"bool": {"filter": [{"script": {"script": {"source": """doc['day_of_week_i'].value==1;""","params": {"day_of_week_i":1}}}}]}}
}
## script score
# 文本字符查询,ES 默认采用 BM25 计算分值排序,若要需要基于自定义字段分值,可采用script_score
# 同比类同 function_score 一样
# 也支持很多高级函数
# 查询参数
# script score,脚本分值查询关键字,查询表达式入口
# query,查询表达式
# script,脚本计算,自定义分值计算
# boost,加权值
# min_score,最低分值限制
# 基于航班数据,搜索目的包含“warsaw”,排序基于2个时间相加
GET kibana_sample_data_flights_term/_search
{"track_total_hits": true,"query": {"script_score": {"query": {"match": {"Dest": "warsaw"}},"script": {"source": """doc['FlightDelayMin'].value+doc['FlightTimeMin'].value;"""}}}
}
## pinned 文档“固定”到搜索结果的顶部
# 对于实现个性化推荐、广告展示或确保某些重要文档始终出现在搜索结果的前面非常有用
# ids:这是一个数组,包含你希望固定的文档的 _id 或其他唯一标识符。这些文档将被固定到搜索结果的顶部。
# field:指定用于匹配文档的字段,默认是 _id。如果你使用的是自定义的唯一标识符字段,可以在这里指定。
# exclude:布尔值,表示是否从最终的搜索结果中排除固定的文档。默认值为 false,即固定的文档仍然会出现在搜索结果中。如果设置为 true,则固定的文档不会出现在最终结果中,但它们的排名信息仍然会被保留。
# inner_hits:可选参数,用于配置返回的固定文档的详细信息。你可以使用 inner_hits 来控制返回的固定文档的数量、排序方式、高亮显示等。
# rest:这是用于查询其他非固定文档的查询条件。你可以在这里使用任何标准的 Elasticsearch 查询 DSL,例如 match、term、bool 等。
GET kibana_sample_data_ecommerce/_search
{"query": {"pinned": {"ids": ["VITR0Y8BbWz2Sn6Eg40a", "U4TR0Y8BbWz2Sn6Eg40a"], "organic": { "match": {"products.product_name": "top"}}}}
}
### 查询建议
# Term查询应该大规模使用,属于精确查询
# span慎重应用,了解底层机制优先
# 词项查询
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/term-level-queries.html
# 跨度查询
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/span-queries.html
# 特殊查询
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/specialized-queries.html
# script-score 脚本分值
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/query-dsl-script-score-guery.htm
# index-max-terms-count
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/index-modules.html#index-max-terms-count
# fuzziness 取值范围
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/common-options.html#fuzziness
# fuzzy 计算算法
# https://en.wikipedia.org/wiki/Levenshtein_distance
# rewrite 重写参数
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/query-dsl-multi-term-rewrite.html
# date-math 时间计算
# https:/www.elastic.co/guide/en/elasticsearch/reference/8.6/common-options.html#date-math
# “固定”到搜索结果的顶部
# https://www.elastic.co/guide/en/elasticsearch/reference/8.6/query-dsl-pinned-query.html
相关文章:
es 3期 第15节-词项查询与跨度查询实战运用
#### 1.Elasticsearch是数据库,不是普通的Java应用程序,传统数据库需要的硬件资源同样需要,提升性能最有效的就是升级硬件。 #### 2.Elasticsearch是文档型数据库,不是关系型数据库,不具备严格的ACID事务特性ÿ…...
iOS Delegate模式
文章目录 一、 Delegate 模式的概念二、Delegate 的实现步骤步骤 1: 定义一个协议(Protocol)步骤 2: 在主类中添加一个 delegate 属性步骤 3: 实现协议的类遵守协议并实现方法步骤 4: 设置 delegate 三、Delegate 模式的特点四、Delegate 模式的常见场景…...
java-使用druid sqlparser将SQL DDL脚本转化为自定义的java对象
java-使用druid sqlparser将SQL DDL脚本转化为自定义的java对象 一、引言二、环境三、待解析的DDL四、解析后的对象结构五、完整的UT类六、控制台输出总结 一、引言 在日常开发中,有些需要对SQL进行解析的场景,比如读取表结构信息,生成文档、…...
React状态管理常见面试题目(一)
1. Redux 如何实现多个组件之间的通信?多个组件使用相同状态时如何进行管理? Redux 实现组件通信 Redux 是一个集中式的状态管理工具,通过共享一个全局 store 来实现多个组件之间的通信。 通信机制: 所有状态保存在 Redux 的全局 store 中。使用 ma…...
jenkins 出现 Jenkins: 403 No valid crumb was included in the request
文章目录 前言解决方式:1.跨站请求为找保护勾选"代理兼容"2.全局变量或者节点上添加环境变量3.(可选)下载插件 the strict Crumb Issuer plugin4.重启 前言 jenkins运行时间长了,经常出现点了好几次才能构建,然后报了Je…...
【前端面试】list转树、拍平, 指标,
这个题目涉及的是将一组具有父子关系的扁平数据转换为树形结构,通常称为“树形结构的构建”问题。类似的题目包括: 1. 组织架构转换 给定一个公司的员工列表,每个员工有 id 和 managerId,其中 managerId 表示该员工的上级。任务…...
游戏引擎学习第43天
仓库 https://gitee.com/mrxiao_com/2d_game 介绍运动方程 今天我们将更进一步,探索运动方程,了解真实世界中的物理,并调整它们,以创建一种让玩家感觉愉悦的控制体验。这并不是在做一个完美的物理模拟,而是找到最有趣…...
NVM:安装配置使用(详细教程)
文章目录 一、简介二、安装 nvm三、配置 nvm 镜像四、配置环境变量五、使用教程5.1 常用命令5.2 具体案例 六、结语 一、简介 在实际的开发和学习中可能会遇到不同项目的 node 版本不同,而出现的兼容性问题。 而 nvm 就可以很好的解决这个问题,它可以在…...
matlab测试ADC动态性能的原理
目录 摘要: 简介: 动态规范和定义 动态规格: 双面到单边的功率谱转换 摘要: 模数转换器(adc)代表了接收器、测试设备和其他电子设备中的模拟世界和数字世界之间的联系。正如本文系列的第1部分中所概述…...
PostgreSQL JSON/JSONB 查询与操作指南
PostgreSQL 提供了强大的 JSON 和 JSONB 数据类型及相关操作,适用于存储和查询半结构化数据。本文将详细介绍其常用操作。 1. 基础操作 1.1 JSON 属性访问 ->: 返回 JSON 对象中的值,结果为 JSON 格式。 SELECT {"a": {"b": 1…...
【Isaac Lab】Ubuntu22.04安装英伟达驱动
目录 1.1 禁用nouveau驱动 1.2 安装必要的依赖项 1.3 下载安装 1.4 查看是否安装成功 1.5 安装CUDA 1.5.1 下载 1.5.2 按照提示进行下载安装 1.5.3 添加环境变量 1.5.4 测试CUDA是否安装成功 1.1 禁用nouveau驱动 输入以下命令打开blacklist.conf文件 sudo vim /etc…...
JS,递归,处理树形数据组件,模糊查询树形结构数据字段
JS递归如何模糊查询树形结构数据,根据数据中的某一个字段值,模糊匹配 直接拿去使用就行 function filterTreeLabel(arr, label) {let result []arr.forEach((item) > {// if (String(item.POBJECT_NAME).toLowerCase().indexOf(label)!-1) {if (String(item.P…...
神州数码DCME-320 online_list.php 任意文件读取漏洞复现
0x01 产品描述: 神州数码DCME-320是一款高性能多业务路由器,专为多用户、多流量和多业务种类需求设计。它采用了...
nginx的内置变量以及nginx的代理
nginx的内置变量 客户端 命令含义$uri可以获取客户端请求的地址,包含主机和查询的参数$request_uri:获取客户端的请求地址,包含主机和查询参数。$host:请求的主机名,客户端—发送请求的url地址$http_user_agent获取客户端请求的浏览器和操作…...
ubuntu监测硬盘状态
安装smartmontools smartctl -l error /dev/sdk smartctl -i /dev/sda lshw -class disk smartctl -H /dev/sd 结果1: 结果2:PASSED,这表示硬盘健康状态良好 smartctl -a /dev/sdb sdk lsblk blkid 测试写入速度 time dd if/dev/zero of…...
3.2.1.2 汇编版 原子操作 CAS
基本原理说明 在 x86 和 ARM 架构上,原子操作通常利用硬件提供的原子指令来实现,比如 LOCK 前缀(x86)或 LDREX/STREX(ARM)。以下是一些关键的原子操作(例如原子递增和比较交换)的汇…...
InnoDB事务系统(二):事务的实现
事务隔离性由锁来实现。原子性、一致性、持久性通过数据库的 redo log 和 undo log 来完成。 redo log 称为重做日志,用来保证事务的原子性和持久性。undo log 用来保证事务的一致性。 有的 DBA 或许会认为 undo 是 redo 的逆过程,其实不然。redo 和 u…...
xdoj :模式匹配
模式匹配 题目描述: 接收信号中包含特定的信号模式,对接收信号进行检测,以统计特定模式出现的次数。 例如接收信号为 9 3 5 7 5 8 6 3 5 7 1 9 3 5 7,如果特定信号为 3 5 7,则接收信号中包含了 3 个特定模式。通过键…...
Redis的基本使用命令(GET,SET,KEYS,EXISTS,DEL,EXPIRE,TTL,TYPE)
目录 SET GET KEYS EXISTS DEL EXPIRE TTL redis中的过期策略是怎么实现的(面试) 上文介绍reids的安装以及基本概念,本章节主要介绍 Redis的基本使用命令的使用 Redis 是一个基于键值对(KEY - VALUE)存储的…...
LruCache(本地cache)生产环境中遇到的问题及改进
问题:单机qps增加时请求摘要后端,耗时也会增加,因为超过了后端处理能力(最大qps,存在任务堆积)。 版本一 引入LruCache。为了避免数据失效,cache数据的时效性要小于摘要后端物料的更新时间&…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
