【C++】小乐乐求和问题的高效求解与算法对比分析

文章目录
- 💯前言
- 💯问题描述与数学模型
- 1.1 题目概述
- 1.2 输入输出要求
- 1.3 数学建模
- 💯方法一:朴素循环求和法
- 2.1 实现原理
- 2.2 分析与问题
- 2.3 改进方案
- 2.4 性能瓶颈与结论
- 💯方法二:数学公式法
- 3.1 实现原理
- 3.2 代码实现
- 3.3 理论优势
- 3.4 与方法一的对比
- 💯等差数列求和公式的理论推导与扩展
- 4.1 公式推导
- 4.2 理论扩展:大规模数据的存储与表示
- 💯小结
![]()

💯前言
- 求和问题是计算机科学中的基础问题,尤其在算法与数值计算中经常出现。然而,当数据规模扩展到极限时,解决方案的性能和精度变得至关重要。本篇文章深入剖析一道典型的求和问题,重点探讨不同方法的
时间复杂度、空间复杂度及其实际应用场景。同时,通过理论与代码的详细对比,展示如何通过数学优化实现计算的高效性与准确性,帮助研究生级读者理解算法的本质与优化策略。此外,文章扩展探讨等差数列的数学性质、程序优化的核心思维,并在理论基础之上结合实际应用,为解决类似问题提供系统性的思维框架。
C++ 参考手册

💯问题描述与数学模型
我们需要解决的问题如下:
1.1 题目概述
小乐乐求和

计算从 1 到 n 的整数和:
S = ∑ i = 1 n i S = \sum_{i=1}^n i S=i=1∑ni
其中,n 是一个正整数,满足 1 ≤ n ≤ 1 0 9 1 \leq n \leq 10^9 1≤n≤109。
1.2 输入输出要求
- 输入:一个正整数 n。
- 输出:求和结果 S。
示例:
| 输入 | 输出 |
|---|---|
| 1 | 1 |
| 10 | 55 |
1.3 数学建模
该问题实质上是等差数列求和的问题,等差数列的求和公式如下:
S = n × ( n + 1 ) 2 S = \frac{n \times (n + 1)}{2} S=2n×(n+1)
通过这个数学公式,我们可以在常数时间内( O ( 1 ) O(1) O(1))直接计算出结果。此外,从复杂度的角度来看,使用该公式能够在理论上实现最优的计算性能。
💯方法一:朴素循环求和法
2.1 实现原理
朴素循环求和法通过遍历从 1 到 n 的所有整数,将每个整数累加到一个和变量中,最终得到结果。代码如下:
#include <iostream>
using namespace std;int main() {int a, sum = 0; // 定义输入变量和存储求和的变量cin >> a; // 读取输入int i = 1; // 初始化计数变量while (i <= a) {sum += i; // 累加当前数值i++;}cout << sum; // 输出最终结果return 0;
}

2.2 分析与问题
-
时间复杂度:O(n)
- 循环从 1 执行到 n,每一步执行一个加法操作,时间复杂度随输入规模线性增加。对于大规模输入,例如 n = 1 0 9 n = 10^9 n=109,执行时间难以接受。
-
整数溢出:
- 使用
int数据类型存储求和结果时,最大可表示范围为 2 31 − 1 ≈ 2.1 × 1 0 9 2^{31} - 1 \approx 2.1 \times 10^9 231−1≈2.1×109。 - 当 n n n 接近 1 0 9 10^9 109 时,累加和会超出范围,导致数据溢出。
- 使用
2.3 改进方案
将求和结果的数据类型修改为 long long,以支持大整数计算:
#include <iostream>
using namespace std;int main() {long long a, sum = 0; // 使用long long存储大数cin >> a;for (int i = 1; i <= a; i++) {sum += i;}cout << sum; // 输出结果return 0;
}


2.4 性能瓶颈与结论
虽然使用 long long 解决了溢出问题,但朴素循环法的时间复杂度仍为 O ( n ) O(n) O(n),对于大规模输入,计算效率极低。该方法的瓶颈在于其依赖线性次数的加法操作,无法避免冗余的计算开销。因此,在处理上限数据规模时,朴素方法往往不适用。
💯方法二:数学公式法
3.1 实现原理
数学公式法基于等差数列求和公式:
S = n × ( n + 1 ) 2 S = \frac{n \times (n + 1)}{2} S=2n×(n+1)
该公式利用数列的性质,通过一次乘法和一次除法即可得到结果,时间复杂度为 O ( 1 ) O(1) O(1)。
3.2 代码实现
#include <iostream>
using namespace std;int main() {long long n; // 使用long long处理大输入cin >> n;long long sum = (n * (n + 1)) / 2; // 利用公式计算结果cout << sum << endl;return 0;
}


3.3 理论优势
-
时间复杂度: O ( 1 ) O(1) O(1)
- 仅需常数次运算即可得出结果,与输入规模无关。理论上,该方法在计算复杂度上已达到最优。
-
数据安全:
- 使用
long long类型确保中间计算过程不会溢出,能够正确处理大规模输入数据。
- 使用
-
简洁性与可维护性:
- 代码逻辑清晰且易于维护。数学公式法避免了冗余的循环操作,使代码更加简洁高效。
3.4 与方法一的对比
| 方法 | 时间复杂度 | 空间复杂度 | 执行效率 | 代码复杂度 |
|---|---|---|---|---|
| 循环求和法 | O(n) | O(1) | 随 n 增大而效率降低 | 较复杂 |
| 数学公式法 | O(1) | O(1) | 执行效率恒定,极高效 | 简单易懂 |
💯等差数列求和公式的理论推导与扩展
4.1 公式推导
等差数列求和公式的核心在于数列的对称性。假设数列为:
1 , 2 , 3 , … , n 1, 2, 3, \dots, n 1,2,3,…,n
我们将其正向与反向相加:
S = 1 + 2 + 3 + ⋯ + n (正序) S = 1 + 2 + 3 + \dots + n \quad \text{(正序)} S=1+2+3+⋯+n(正序)
S = n + ( n − 1 ) + ( n − 2 ) + ⋯ + 1 (反序) S = n + (n-1) + (n-2) + \dots + 1 \quad \text{(反序)} S=n+(n−1)+(n−2)+⋯+1(反序)
两式相加:
2 S = ( 1 + n ) + ( 2 + ( n − 1 ) ) + ⋯ + ( n + 1 ) 2S = (1 + n) + (2 + (n-1)) + \dots + (n + 1) 2S=(1+n)+(2+(n−1))+⋯+(n+1)
数列中共有 n n n 项,每一对的和为 n + 1 n + 1 n+1,因此:
2 S = n × ( n + 1 ) 2S = n \times (n + 1) 2S=n×(n+1)
将结果除以 2:
S = n × ( n + 1 ) 2 S = \frac{n \times (n + 1)}{2} S=2n×(n+1)
4.2 理论扩展:大规模数据的存储与表示
在数值计算中,当处理极大规模数据时,选择合适的数据类型尤为重要。在 C++ 中,long long 类型可以存储 64 位整数,最大值为 9.2 × 1 0 18 9.2 \times 10^{18} 9.2×1018。此外,为了进一步处理超大数值,可以引入库如 GMP(GNU Multiple Precision Arithmetic Library)以进行多精度计算。
💯小结

本篇文章详细解析了求和问题的两种解决方案,并深入对比了它们的时间复杂度与实际应用场景:
-
朴素循环法:
- 适用于小规模数据,但在大规模输入下性能欠佳。
-
数学公式法:
- 依托数学优化,时间复杂度为 O ( 1 ) O(1) O(1),是解决此类问题的最佳方案。
- 数学公式法 是大规模求和问题的高效解决方案。
- 数据类型选择:使用
long long避免溢出。 - 理论与实践结合:通过数学推导理解公式的本质,提高代码优化的意识。
- 扩展思维:掌握数据类型的选择及大规模数值计算的解决方案。
通过本文的深入剖析,读者能够全面理解求和问题的不同解法,并掌握优化代码性能与理论推导的核心技能。这不仅适用于编程竞赛和工程实践,也为进一步研究算法优化与数值计算奠定了坚实的基础。

相关文章:
【C++】小乐乐求和问题的高效求解与算法对比分析
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯问题描述与数学模型1.1 题目概述1.2 输入输出要求1.3 数学建模 💯方法一:朴素循环求和法2.1 实现原理2.2 分析与问题2.3 改进方案2.4 性能瓶颈与结论…...
configure错误:“C compiler cannot create executables“
执行./configure命令出现如下奇怪的错误,百思不得姐: ./configure命令的日志文件为config.log,发生错误时,该文件的内容: This file contains any messages produced by compilers while running configure, to aid d…...
PAT乙级 锤子剪刀布 巩固巩固map的使用
主要是想借这题巩固巩固c map的使用方法。 大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示: 现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。 输…...
Webpack学习笔记(1)
1.为什么使用webpack? webpack不仅可以打包js代码,并且那个且支持es模块化和commonjs,支持其他静态资源打包,如图片、字体。。。 2.如何解决作用域问题? 作用域问题:例如loadsh等库,会绑定window对象,会…...
使用xpath规则进行提取数据并存储
下载lxml !pip install lxmlimport requests headers{"user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.6261.95 Safari/537.36" } url"https://movie.douban.com/chart" respon…...
【物联网技术与应用】实验3:七彩LED灯闪烁
实验3 七彩LED灯闪烁 【实验介绍】 七彩LED灯上电后,7色动闪光LED模块可自动闪烁内置颜色。它可以用来制作相当吸引人的灯光效果。 【实验组件】 ● Arduino Uno主板* 1 ● USB数据线* 1 ● 7彩LED模块*1 ● 面包板*1 ● 9V方型电池*1 ● 跳线若干 【实验原…...
素数回文数的个数
素数回文数的个数 C语言代码C 代码Java代码Python代码 💐The Begin💐点点关注,收藏不迷路💐 求11到n之间(包括n),既是素数又是回文数的整数有多少个。 输入 一个大于11小于1000的整数n。 输出…...
车辆重识别代码笔记12.18
1、实例归一化(Instance Normalization)和批量归一化(Batch Normalization) 实例归一化(Instance Normalization): 计算步骤: 对于每个输入样本,在每个通道上分别计算均…...
selenium 在已打开浏览器上继续调试
关闭浏览器,终端执行如下指令,--user-data-dir换成自己的User Data路径 chrome.exe --remote-debugging-port9222 --user-data-dir"C:\Users\xxx\AppData\Local\Google\Chrome\User Data" 会打开浏览器,打开百度,如下状…...
Sentry日志管理thinkphp8 tp8 sentry9 sentry8 php8.x配置步骤, tp8自定义异常处理类使用方法
tp8的默认使用的就是composer来管理第三方包, 所以直接使用 composer 来安装 sentry9 即可. 同时tp8和tp5的配置方式不太一样, 这里我们直接使用自定义异常类来处理Sentry的异常. 1. 安装 sentry9 包 # 安装 sentry9 包 composer require "tekintian/sentry9-php" …...
【经验分享】容器云搭建的知识点
最近忙于备考没关注,有次点进某小黄鱼发现首页出现了我的笔记还被人收费了 虽然我也卖了一些资源,但我以交流、交换为主,笔记都是免费给别人看的 由于当时刚刚接触写的并不成熟,为了避免更多人花没必要的钱,所以决定公…...
Java对集合的操作方法
1. 数组转集合 //数组转集合 String[] split quickRechargeAmount.split(","); List<String> stringList Stream.of(split).collect(Collectors.toList()); 2. 对List集合数据内容进行分组 //对List集合数据内容进行分组 Map<String, List<LiveAppGi…...
FreeRTOS--基础知识
FreeRTOS基础知识 裸机与RTOS的特点: 裸机: 裸机又称为前后台系统,前台系统指的是中断服务函数,后台系统指的是大循环,即应用程序。 1、实时性差:应用程序轮流执行 2、delay:空等待ÿ…...
Node的学习以及学习通过Node书写接口并简单操作数据库
Node的学习 Node的基础上述是关于Node的一些基础,总结的还行; 利用Node书写接口并操作数据库 1. 初始化项目 创建新的项目文件夹,并初始化 package.json mkdir my-backend cd my-backend npm init -y2. 安装必要的依赖 安装Express.js&…...
【Linux探索学习】第二十二弹——用户缓冲区:深入解析操作系统中数据交互时的缓冲区机制
Linux学习笔记: https://blog.csdn.net/2301_80220607/category_12805278.html?spm1001.2014.3001.5482 前言: 前面两章我们已经讲了一些文件操作和文件重定向问题,以及一些相关的知识点,比如文件在内存中的存储位置࿰…...
Cesium-(Primitive)-(CylinderOutlineGeometry)
CylinderOutlineGeometry 以下是 CylinderOutlineGeometry 类的构造函数属性,以表格形式展示: 属性名类型默认值描述lengthnumber圆柱体的长度。topRadiusnumber圆柱体顶部的半径。bottomRadiusnumber圆柱体底部的半径。slicesnumber128可选,圆柱体周长的边数。numberOfVert…...
【ETCD】【源码阅读】深入分析 storeTxnWrite.Put方法源码
该方法是 storeTxnWrite 类型中的核心方法,负责将键值对存储到数据库,同时处理键的元数据(如版本、修订号、租约)并管理租约关联。 目录 一、完整代码二、方法详解方法签名1. 计算修订号并初始化变量2. 检查键是否已存在3. 生成索…...
MySQL技术:深入理解索引与优化
MySQL是一个广泛使用的开源关系型数据库管理系统。它以其高性能、可靠性和易用性而闻名。在数据库操作中,查询优化是一个非常重要的环节,而索引是实现查询优化的关键技术之一。本文将深入探讨MySQL中的索引原理、类型以及如何优化索引以提高数据库性能。…...
【广东-东莞】《东莞市政府投资信息化项目造价指南》-省市费用标准解读系列26
2023年6月27日,东莞市发展和改革局发布《东莞市政府投资信息化项目造价指南(试行)》,此指南由东莞市政府投资项目评审中心编制,指南旨在完善东莞市为规范政府投资信息化项目造价计费方式,高质量、高效率推进…...
8、基于SpringBoot的房屋租赁系统
摘 要 社会的发展和科学技术的进步,互联网技术越来越受欢迎。网络计算机的生活方式逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。互联网具有便利性,速度快,效率高,成本低等优点。 因此,构建符…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
