当前位置: 首页 > news >正文

文献研读|基于像素语义层面图像重建的AI生成图像检测

前言:本篇文章主要对基于重建的AI生成图像检测的四篇相关工作进行介绍,分别为基于像素层面重建的检测方法 DIRE 和 Aeroblade,以及基于语义层面重建的检测方法 SimGIR 和 Zerofake;并对相应方法进行比较。

相关文章:论文研读|针对文生图模型的AIGC检测


⚠️ 基于像素层面重建的检测

顾名思义,像素层面的重建,即保证重建图像在视觉上要尽可能与原始图像一致。

比较具有代表性的2️⃣篇文章是 DIRE 和 Aeroblade:

  • DIRE for Diffusion-Generated Image Detection. ICCV, 2023. code
  • AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error. CVPR, 2024. code

二者的主要思想都是以视觉相似性为目的对原始图像进行重建,根据真实图像和生成图像分别与各自重建图像的差异性完成检测。主要区别在于,得到重建图像后,DIRE使用原始图像与重建图像的残差作为输入训练一个二分类器;而Aeroblade无需训练,直接使用lpips距离直接判断原始图像是否为生成图像。

在这里插入图片描述


⚠️ 基于语义层面重建的检测

基于语义的图像重建,旨在保证原始图像与重建图像在语义层面的相似性。

比较具有代表性的2️⃣篇文章是 ZeroFake 和 SimGIR:

  • SemGIR: Semantic-Guided Image Regeneration Based Method for AI-generated Image Detection and Attribution. ACM Multimedia, 2024.
  • ZeroFake: Zero-Shot Detection of Fake Images Generated and Edited by Text-to-Image Generation Models. CCS, 2024. code

这两项工作主要思想都是以原始图像对应的提示词文本为语义指引,得到重建图像辅助检测。区别在于,SemGIR 直接使用BLIP图像描述模型得到原始图像的提示词文本,生成重建图像,然后联合原始图像特征与重建图像特征训练二分类器进行检测(如下图):

在这里插入图片描述

而 Zerofake 无需训练,直接通过计算原始图像与重建图像的SSIM距离完成检测(提前设定比较阈值,文中为0.78)。此外,不同于 SimGIR,Zerofake不是使用BLIP模型得到的描述文本直接作为原始图像提示词文本,而是对描述文本添加了对抗扰动提示,如下图及伪代码所示:

在这里插入图片描述

在这里插入图片描述


像素层面重建和语义层面重建的区别是在 SimGIR 这篇文章中提出来的,旨在保证原始图像与重建图像的语义特征相似性。虽然方法是在 few-shot场景下使用常规的特征拼接得到检测特征依据,但能够找到这样一个切入点成文个人感觉比较新奇,启发就是方法的motivation很重要,要言之有物,言之有理。

比较好奇的一个点是,原始图像与重建图像之间的语义一致性对于检测结果有什么具体影响,并且这一影响是否在原理和实验层面进行解释呢?

在这里插入图片描述

相关文章:

文献研读|基于像素语义层面图像重建的AI生成图像检测

前言:本篇文章主要对基于重建的AI生成图像检测的四篇相关工作进行介绍,分别为基于像素层面重建的检测方法 DIRE 和 Aeroblade,以及基于语义层面重建的检测方法 SimGIR 和 Zerofake;并对相应方法进行比较。 相关文章:论…...

【操作系统】为什么需要架构裁剪?

为什么需要架构裁剪? 原因 减小核心大小提高架构初始化速度降低内存占用提高系统性能移除不需要的功能,增加安全性 裁剪方法 初始化配置设置功能模块化移除不需要的驱动底层 一般裁剪对象(以操作系统为例) 文件系统的支持网…...

LSTM长短期记忆网络

LSTM(长短期记忆网络)数学原理 LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),解决了标准RNN中存在的梯度消失(Vanishing Gradient) 和**梯度爆炸&#x…...

基于前端技术UniApp和后端技术Node.js的电影购票系统

文章目录 摘要Abstruct第一章 绪论1.1 研究背景与意义1.2 国内外研究现状 第二章 需求分析2.1 功能需求分析2.2 非功能性需求分析 第二章系统设计3.1 系统架构设计3.1.1 总体架构3.1.2 技术选型 3.2 功能架构 第四章 系统实现4.1 用户端系统实现4.1.1 用户认证模块实现4.1.2 电…...

数据结构与算法:稀疏数组

前言 此文以整型元素的二维数组为例,阐述稀疏数组的思想。其他类型或许有更适合压缩算法或者其他结构的稀疏数组,此文暂不扩展。 稀疏数组的定义 在一个二维数据数组里,由于大量的元素的值为同一个值,比如 0或者其他已知的默认值…...

Meta重磅发布Llama 3.3 70B:开源AI模型的新里程碑

在人工智能领域,Meta的最新动作再次引起了全球的关注。今天,我们见证了Meta发布的Llama 3.3 70B模型,这是一个开源的人工智能模型,它不仅令人印象深刻,而且在性能上达到了一个新的高度。 一,技术突破&#…...

VSCode中的Black Formatter没有生效的解决办法

说明 如果正常按照配置进行的话,理论上是可以生效的。 "[python]": {"editor.defaultFormatter": "ms-python.black-formatter","editor.formatOnSave": true }但我在一种情况下发现不能生效,应为其本身的bug…...

【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题

目录 背包问题简介 问题描述 输入: 输出: 动态规划解法 动态规划状态转移 代码实现 代码解释 动态规划的时间复杂度 例子解析 输出: 总结 作者我蓝桥杯:2023第十四届蓝桥杯国赛C/C大学B组一等奖,所以请听我…...

Odoo:免费开源ERP的AI技术赋能出海企业电子商务应用介绍

概述 伴随电子商务的持续演进,客户对于便利性、速度以及个性化服务的期许急剧攀升。企业务必要探寻创新之途径,以强化自身运营,并优化购物体验。达成此目标的最为行之有效的方式之一,便是将 AI 呼叫助手融入您的电子商务平台。我们…...

微信小程序苹果手机自带的数字键盘老是弹出收起,影响用户体验,100%解决

文章目录 1、index.wxml2、index.js3、index.wxss1、index.wxml <!--index.wxml--> <view class="container"><view class="code-input-container"><view class="code-input-boxes"><!-- <block wx:for="{{…...

sql中case when若条件重复 执行的顺序

sql case when若条件重复 执行的顺序 在 SQL 中&#xff0c;如果你在 CASE 表达式中定义了多个 WHEN 子句&#xff0c;并且这些条件有重叠&#xff0c;那么 CASE 表达式的执行顺序遵循以下规则&#xff1a; &#xff08;1&#xff09;从上到下&#xff1a;SQL 引擎会按照 CASE …...

压力测试Jmeter简介

前提条件&#xff1a;要安装JDK 若不需要了解&#xff0c;请直接定位到左侧目录的安装环节。 1.引言 在现代软件开发中&#xff0c;性能和稳定性是衡量系统质量的重要指标。为了确保应用程序在高负载情况下仍能正常运行&#xff0c;压力测试变得尤为重要。Apache JMeter 是一…...

cesium 与 threejs 对比

Cesium 和 Three.js 都是用于在 Web 浏览器中创建和渲染 3D 图形的强大 JavaScript 库&#xff0c;但它们有显著的不同之处&#xff0c;主要体现在应用领域、功能集和使用场景上。 以下是两者之间的对比&#xff1a; 1. 应用场景 Three.js: 适用于广泛的 3D 图形应用&#xff…...

探索QScreen的信号与槽:动态响应屏幕变化

在处理屏幕显示和多显示器环境时&#xff0c;QScreen 提供了一些特有的信号&#xff0c;这些信号可以在屏幕的变化时通知应用程序&#xff0c;帮助我们动态地适配和响应显示设备的变化。今天&#xff0c;我们将深入探讨如何使用 QScreen 的信号与槽&#xff0c;并展示适用的使用…...

vLLM项目加入PyTorch生态系统,引领LLM推理新纪元

近日&#xff0c;vLLM项目宣布正式成为PyTorch生态系统的一部分&#xff0c;标志着该项目与PyTorch的合作进入了一个全新的阶段。本文将从以下几个方面进行介绍&#xff0c;特别提醒&#xff1a;安装方案在第四个部分&#xff0c;可选择性阅读。 vLLM项目概述 vLLM的成就与实际…...

索引-介绍结构语法

一.概述&#xff1a; 1.当给某个字段创建索引后&#xff0c;就会把字段生成二叉排序树进行查找&#xff0c;大大增加了查找效率&#xff0c;比不创建索引时用的全表扫描好得多。 2.二叉排序树&#xff1a;小的在左边&#xff0c;大的在右边(查找和存放都遵循这个原则)。 3.注…...

SpringBoot整合JDBC

讲到这里&#xff0c;基本上我们就可以使用SpringBoot来开发Web项目视图显示和业务逻辑代码&#xff0c;但是要做一个完成案例&#xff0c;我们还差一点点&#xff0c;就是怎么访问数据库&#xff0c;获取数据&#xff0c;接下来我们就看怎么用SpringBoot整合我们前面已经讲过的…...

XXE靶场

XXE-lab 靶场 靶场网址&#xff1a;http://172.16.0.87/ 第一步我们看到网站有登录框我们试着用 bp 去抓一下包 将抓到的包发到重放器中 然后我们构建palody <!DOCTYPE foo [ <!ENTITY xxe SYSTEM "php://filter/readconvert.base64-encode/resourceC:/flag/fla…...

Elasticsearch:使用 Open Crawler 和 semantic text 进行语义搜索

作者&#xff1a;来自 Elastic Jeff Vestal 了解如何使用开放爬虫与 semantic text 字段结合来轻松抓取网站并使其可进行语义搜索。 Elastic Open Crawler 演练 我们在这里要做什么&#xff1f; Elastic Open Crawler 是 Elastic 托管爬虫的后继者。 Semantic text 是 Elasti…...

Facebook的隐私保护政策:用户数据如何在平台上被管理?

在当今数字化世界&#xff0c;社交平台如何管理用户数据并保护隐私成为了一个热点话题。作为全球最大的社交网络&#xff0c;Facebook&#xff08;现Meta&#xff09;在数据隐私方面的政策备受关注。本文将简要介绍Facebook的隐私保护措施&#xff0c;以及用户数据如何在平台上…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...