【论文阅读】Computing the Testing Error without a Testing Set
https://blog.csdn.net/qq_40021158/article/details/109485216
可以使用测试集来估计训练集和测试集之间的性能差距,但是要避免过度拟合测试数据几乎是不可能的。 使用隔离的测试集可能会解决此问题,但这需要不断更新数据集,这是一项非常昂贵的尝试。
在这里,我们推导出了一种算法,用于估计不需要任何测试集的训练和测试之间的性能差距。 具体来说,我们推导出了许多持久性拓扑度量,这些度量可确定何时DNN可以学习推广到看不见的样本。这样,即使我们无法访问这些样本,我们也可以计算出DNN的测试误差。

a)我们不使用任何测试样本在任何计算机视觉问题上计算任何深度神经网络(DNN)的测试性能1(顶部); 标记和未标记的样本都是没有必要的。 这与传统计算机视觉方法形成鲜明对比,传统计算机视觉方法使用选定的测试数据集(底部)来计算模型性能。 (b)我们的算法(x轴)针对训练与测试性能(y轴)之间的性能差距∆ρ给出的持久代数拓扑概要( The persistent algebraic topological summary)( λ∗ , µ∗ ) 。
我们提出的假设是,泛化误差是网络内部工作的函数,此处由网络的功能拓扑表示并通过拓扑概要进行描述。 我们建议对这个函数进行回归,并仅在训练数据上评估测试性能。
图1(b)展示了一个例子。 在此图中,x轴显示了DNN的持久拓扑度量的线性组合。 此图中的y轴是在多个计算机视觉问题上使用这些DNN时的性能差距∆ρ。 从该图中可以看出,我们提出的拓扑概要与DNN的性能差距之间存在线性关系。 这意味着了解我们的拓扑概要的价值与了解DNN在隔离的数据集上的性能一样好,但没有上述任何缺点–无需依赖独立的团队来收集,管理和更新测试集。
具体细节

计算两两神经元之间的相关性

一个DNN可以得到一个相关性矩阵,从而可以构造PH
基于此持久性图,我们将腔的生命定义为该图中的平均时间(即持久性)。公式地,

同样,我们将其中年定义为持久性的平均密度。 公式地,

最后,我们定义了从这些拓扑概要到训练误差与测试误差之间的差值的线性函数映射,


根据以上结果,我们可以估算出测试误差,而无需任何测试数据,即



相关文章:
【论文阅读】Computing the Testing Error without a Testing Set
https://blog.csdn.net/qq_40021158/article/details/109485216 可以使用测试集来估计训练集和测试集之间的性能差距,但是要避免过度拟合测试数据几乎是不可能的。 使用隔离的测试集可能会解决此问题,但这需要不断更新数据集,这是一项非常昂贵…...
Visio——同一个工程导出的PDF文件大小不一样的原因分析
现象 在不同电脑,导出来的PDF文件大小不一样。 原因分析 文件小的未将字体嵌入,文件大的已经将字体嵌入了。...
【ETCD】ETCD 架构揭秘:内部各组件概览
ETCD 的主要组件及它们之间的关联关系如下: 目录 1. Client(客户端)2. gRPC 接口3. Etcd Server Main Loop(ETCD 主循环)4. Raft(共识模块)5. Peer Etcd Nodes(ETCD 集群节点&#x…...
Qt WORD/PDF(四)使用 QAxObject 对 Word 替换(QWidget)
关于QT Widget 其它文章请点击这里: QT Widget 国际站点 GitHub: https://github.com/chenchuhan 国内站点 Gitee : https://gitee.com/chuck_chee 姊妹篇: Qt WORD/PDF(一)使用 QtPdfium库实现 PDF 操作 Qt WORD/PDF(二…...
音视频学习(二十四):hls协议
基本原理 HLS协议通过将视频文件切分成多个小的媒体段(通常是10秒左右的.ts文件),并通过HTTP传输给客户端。视频播放过程中,客户端按顺序请求这些小段文件来逐步播放整个视频流。HLS还支持多种码率,以便适应不同网络条…...
UniDepth 学习笔记
摘要 准确的单目度量深度估计(MMDE)是解决三维感知和建模中下游任务的关键。然而,最近的MMDE方法的显著准确性仅限于其训练领域。这些方法存在适度的域间隙,也不能推广到看不见的域,这阻碍了它们的实际适用性。本文提出…...
PVE——OpenWRT 硬盘 size单位的调整
问题:初始状态为120MB 还需要进行计算,如果通过图形界面添加磁盘会出现单位不变的情况。 进入命令行前记得给你的虚拟机拍照,防止误操作 通过ssh 进入PVE命令行 按需添加容量即可 不到1G 会显示M 超过1G 不是G整数均为M单位。 …...
Android-ImagesPickers 拍照崩溃优化
Android-ImagesPickers 作为老牌图片选择器,帮助了很多牛马宝宝,刚好最近用到了多相册选择以及拍照,可能是高版本机型问题,导致拍照后就闪退 原作者文章以及git Android实用视图动画及工具系列之九:漂亮的图片选择器…...
Linux dd 命令详解:工作原理与实用指南(C/C++代码实现)
这段代码是一个模仿 Linux dd 命令的工具,它用于在不同文件之间复制数据。dd 是一个非常强大的命令行工具,可以用于数据备份、转换和复制。下面我将详细解释这段代码的原理、实现方式以及如何运行和测试。 Linux dd 命令的工作原理 dd 命令是 Unix 和 …...
Golang学习历程【第一篇 入门】
Golang学习历程【第一篇 入门Hello World】 1. 学习文档2. Window 本地安装Go2.1 安装2.2 验证 3. 开发环境——VsCode3.1 VsCode 安装3.2 安装插件3.2.1 language 语言汉化插件安装3.2.2 Go插件安装 4. Hello World 入门4.1 建工程4.2 创建项目文件4.3 编写Hello World程序4.4…...
青少年编程与数学 02-004 Go语言Web编程 01课题、Web应用程序
青少年编程与数学 02-004 Go语言Web编程 01课题、Web应用程序 课题摘要:一、Web应用程序二、Web服务器(一)什么是Web服务器(二)Web服务器配置1. 选择服务器软件2. 安装服务器软件3. 配置服务器4. 安全设置5. 部署网站内容6. 测试服…...
【mysql】如何解决主从架构从库延迟问题
目录 1. 说明2.优化主库的写入性能3. 优化网络性能4. 增强从库的硬件性能5. 调整从库的配置6. 主从架构优化7. 监控和调优8.使用 GTID 和 Group Replication 1. 说明 1.在 MySQL 数据库中,从库延迟(replication lag)是指主库和从库之间的数据…...
前端学习-获取DOM对象(二十一)
目录 前言 目标 提问 学习路径 根据CSS选择器来获取DOM元素 其他获取DOM元素的方法 根据CSS选择器来获取DOM元素 选择匹配的第一个元素 语法 示例 参数 返回值 选择匹配的多个元素语法 参数 字符串返回值 示例 补充 其它获取DOM元素方法 根据id获取一个元素 …...
PCL点云库入门——PCL库中Eigen数学工具库的基本使用(持续更新)
0、前言 PCL点云库中的算法都基于Eigen数学工具库来实现的,因此,掌握Eigen库对于深入理解和应用PCL点云库至关重要。Eigen库不仅提供了高效的矩阵和向量运算,还支持复杂的线性代数、几何变换等操作,为PCL点云处理提供了强大的数学…...
CLion Inlay Hints - 取消 CLion 灰色的参数和类型提示
CLion Inlay Hints - 取消 CLion 灰色的参数和类型提示 1. Parameter hints for C/C1.1. Toggle parameter hints globally 2. Type hints for C/C2.1. Toggle type hints globally 3. Toggle inlay hints globallyReferences https://www.jetbrains.com/help/clio…...
2025山东科技大学考研专业课复习资料一览
[冲刺]2025年山东科技大学020200应用经济学《814经济学之西方经济学[宏观部分]》考研学霸狂刷870题[简答论述计算题]1小时前[强化]2025年山东科技大学085600材料与化工《817物理化学》考研强化检测5套卷22小时前[冲刺]2025年山东科技大学030100法学《704综合一[法理学、国际法学…...
vue3 v-model实例之二,tab标签页的实现
<template><div><Tab v-model"activeTab" :list"tabs" /><div><p>当前激活的 Tab 索引: {{ activeTab }}</p></div></div> </template><script setup> import { ref } from vue; import Tab …...
东方通TongWeb7.0.4.9M4部署SuperMap iServer 11.2.1
一、软件版本 操作系统: CentOS Linux release 7.5.1804 (Core)JDK:11.0.18东方通:TongWeb7.0.4.9M4SuperMap iServer:11.2.1 JDK和TongWeb软件分享: 链接: https://pan.baidu.com/s/1HGDTPnPID0PEOMbg3FjTVQ?pwdbh8v 提取码: bh8v 东方通软…...
QT绘制同心扇形
void ChartForm::paintEvent(QPaintEvent *) {QPainter painter(this);painter.setRenderHint(QPainter::Antialiasing);// 设置抗锯齿painter.save();// 设置无边框(不需要设置QPen,因为默认是不绘制边框的)QPen pen(Qt::NoPen);// QPen pen…...
2012年西部数学奥林匹克试题(几何)
2012/G1 △ A B C \triangle ABC △ABC 内有一点 P P P, P P P 在 A B AB AB, A C AC AC 上的投影分别为 E E E, F F F, 射线 B P BP BP, C P CP CP 分别交 △ A B C \triangle ABC △ABC 的外接圆于点 M M M, N N N. r r r 为 △ A B C \triangle ABC △ABC 的内…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
【字节拥抱开源】字节团队开源视频模型 ContentV: 有限算力下的视频生成模型高效训练
本项目提出了ContentV框架,通过三项关键创新高效加速基于DiT的视频生成模型训练: 极简架构设计,最大化复用预训练图像生成模型进行视频合成系统化的多阶段训练策略,利用流匹配技术提升效率经济高效的人类反馈强化学习框架&#x…...
第6章:Neo4j数据导入与导出
在实际应用中,数据的导入与导出是使用Neo4j的重要环节。无论是初始数据加载、系统迁移还是数据备份,都需要高效可靠的数据传输机制。本章将详细介绍Neo4j中的各种数据导入与导出方法,帮助读者掌握不同场景下的最佳实践。 6.1 数据导入策略 …...
在Android13上添加系统服务的好用例子
在Android13上添加一个自动的system service例子 留好,备用。 --- .../prebuilts/api/30.0/plat_pub_versioned.cil | 76 - .../prebuilts/api/31.0/plat_pub_versioned.cil | 94 - .../prebuilts/api/32.0/plat_pub_versioned.cil | 94 - frameworks/base/co…...
Java + Spring Boot + Mybatis 插入数据后,获取自增 id 的方法
在 MyBatis 中使用 useGeneratedKeys"true" 获取新插入记录的自增 ID 值,可通过以下步骤实现: 1. 配置 Mapper XML 在插入语句的 <insert> 标签中设置: xml 复制 下载 运行 <insert id"insertUser" para…...
jieba实现和用RNN实现中文分词的区别
Jieba 分词和基于 RNN 的分词在技术路线、实现机制、性能特点上有显著差异,以下是核心对比: 1. 技术路线对比 维度Jieba 分词RNN 神经网络分词范式传统 NLP(规则 统计)深度学习(端到端学习)核心依赖词典…...
