当前位置: 首页 > news >正文

注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

目录

    • 注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现LSTM-Attention-Adaboost时间序列预测,长短期记忆神经网络注意力机制结合AdaBoost多变量时间序列预测;注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量负荷预测;
LSTM-Attention-AdaBoost是一种将LSTM-Attention和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。LSTM-Attention-AdaBoost算法的基本思想是将LSTM-Attention作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个LSTM-Attention模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
2.运行环境为Matlab2023b;
3.data为数据集,excel数据,多输入单输出时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价;

程序设计

  • 完整程序和数据获取方式私信博主回复组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测(Matlab)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺for i = 1:size(P_train,2)trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
endfor i = 1:size(p_test,2)testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
endtargetD =  t_train;
targetD_test  =  t_test;numFeatures = size(p_train,1);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关文章:

注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

注意力机制时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测 目录 注意力机制时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测效果一览基本介绍程序设计参考资料 效果一览 基…...

uniapp 微信小程序 均分数据展示

效果图 数据展示&#xff0c;可自行搭配 html <view class"num-wrapper"><view class"num-item" click.stop"routerGo(跳转的地址)"><text class"num">&#xffe5;{{ 要展示的数据 || 0}}</text><view…...

Nacos 3.0 考虑升级到 Spring Boot 3 + JDK 17 了!

Nacos 由阿里开源&#xff0c;是 Spring Cloud Alibaba 中的一个重要组件&#xff0c;主要用于发现、配置和管理微服务。 由于 Spring Boot 2 的维护已于近期停止&#xff0c;Nacos 团队考虑升级到 Spring Boot 3 JDK 17&#xff0c;目前正在征求意见和建议。 这其实是一件好…...

跟沐神学读论文-论文阅读管理

摘要 近期有读论文的需求&#xff0c;就需要去了解一下论文到底要怎么读&#xff0c;同一个系列之间的论文如何作整理和归纳&#xff0c;之前也有了解过市面上有成熟的论文阅读工具&#xff0c;但是对于学生党来讲没什么性价比&#xff0c;在B站上看到沐神有讲解他的思路Typor…...

Python 参数配置使用 XML 文件的教程 || Python打包 || 模型部署

当配置项存储在外部文件&#xff08;如 XML、JSON&#xff09;时&#xff0c;修改配置无需重新编译和发布代码。通过更新 XML 文件即可调整参数&#xff0c;无需更改源代码&#xff0c;从而提升开发效率和代码可维护性。 1. 为什么选择 XML 配置文件 XML 配置文件具有多种优点…...

[SV]如何在UVM环境中使用C Model

在UVM环境中使用C Memory 一、C语言实现Memory 1.1 代码说明 Memory 初始化: memory_init() 函数将内存空间初始化为 0,并初始化互斥锁。AXI 写操作 (axi_write): 检查地址范围是否合法。使用 memcpy 将数据从输入缓冲区写入模拟内存。使用互斥锁保证线程安全。AXI 读操作 …...

十大开源的Cursor AI替代方案

随着AI的兴起&#xff0c;所使用的工具也在不断进步。Cursor AI 作为一个强大的编码助手&#xff0c;已经成为开发人员不可或缺的工具。开源替代方案提供了透明性、个性化和成本效益。本文深入探讨了Cursor AI 的十大开源替代方案&#xff0c;这些方案将丰富您的编码体验&#…...

相机光学(四十六)——镜头马达(VCM)控制策略模式

One Step Mode、Linear Slope Control&#xff08;LSC&#xff09;和Acceleration Control是三种不同的控制模式&#xff0c;它们在控制策略和应用场景上有所区别。这些控制模式在VCM中的应用是为了提高其性能&#xff0c;减少振动&#xff0c;加快响应速度&#xff0c;并提高定…...

专业140+总分410+浙江大学842信号系统与数字电路考研经验浙大电子信息与通信工程,真题,大纲,参考书。

考研落幕&#xff0c;本人本中游211&#xff0c;如愿以偿考入浙江大学&#xff0c;专业课842信号系统与数字电路140&#xff0c;总分410&#xff0c;和考前多次模考预期差距不大&#xff08;建议大家平时做好定期模考测试&#xff0c;直接从实战分数中&#xff0c;找到复习的脉…...

了解ARM的千兆以太网——RK3588

1. 简介 本文并不重点讲解调试内容&#xff0c;重点了解以太网在ARM设计中的框架以及在设备树以及驱动的一个整体框架。了解作为一个驱动开发人员当拿到一款未开发过的ARM板卡应该怎么去把网卡配置使用起来。 2. 基础知识介绍 在嵌入式ARM中实现以太网的解决方案通常有以下两种…...

JavaFX使用jfoenix的UI控件

jfoenix还是一个不错的样式&#xff0c;推荐使用&#xff0c;而且也可以支持scene builder中的拖拖拽拽 需要注意的是过高的javafx版本可能会使得某些样式或控件无法使用 比如alert控件&#xff0c;亲测javaFX 19版本可以正常使用 1.在pom.xml中引入依赖 GitHub地址https://gi…...

Linux(Ubuntu)命令大全——已分类整理,学习、查看更加方便直观!(2024年最新编制)

Hello! 认真好学的小伙伴们&#xff0c;大家好呀&#xff08;Respect~&#xff09;&#xff01;我是 H u a z z i Huazzi Huazzi&#xff0c;欢迎观看本篇博客&#xff0c;接下来让我们一起来学习 Ubuntu命令大全 吧&#xff01;祝你有所收获&#xff01; 文章目录 前言&#x…...

单片机:实现教学上下课的自动打玲(附带源码)

单片机实现教学上下课的自动打铃 在学校或其他教育机构中&#xff0c;定时的打铃系统被广泛应用&#xff0c;用于提醒学生和老师上下课的时间。一个简单的自动打铃系统可以通过单片机实现&#xff0c;结合蜂鸣器和定时器控制&#xff0c;可以在设定的时间点自动打铃&#xff0…...

进程通信方式---共享映射区(无血缘关系用的)

5.共享映射区&#xff08;无血缘关系用的&#xff09; 文章目录 5.共享映射区&#xff08;无血缘关系用的&#xff09;1.概述2.mmap&&munmap函数3.mmap注意事项4.mmap实现进程通信父子进程练习 无血缘关系 5.mmap匿名映射区 1.概述 原理&#xff1a;共享映射区是将文件…...

深度学习实战智能交通计数

本文采用YOLOv8作为核心算法框架&#xff0c;结合PyQt5构建用户界面&#xff0c;使用Python3进行开发。YOLOv8以其高效的实时检测能力&#xff0c;在多个目标检测任务中展现出卓越性能。本研究针对车辆目标数据集进行训练和优化&#xff0c;该数据集包含丰富的车辆目标图像样本…...

【MySQL】MySQL表的操作

【MySQL】MySQL表的操作 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;MySQL&#x1f34b; &#x1f33c;文章目录&#x1f33c; 1. 创建表 2. 查看表结构 3. 修改表 4. 删除表 1. 创建表 create table table_name(表名称)( fiel…...

Redis篇-12--数据结构篇4--Hash内存模型(数组,链表,压缩列表zipList,哈希表,短结构)

Redis的Hash数据结构用于存储键值对&#xff08;key-value形式&#xff09;的集合&#xff08;类似java中HashMap或对象&#xff09;。为了在保证高效性能的同时节省内存&#xff0c;Redis对Hash的底层实现进行了多种优化。特别是通过使用压缩列表&#xff08;ziplist&#xff…...

二、windows环境下vscode使用wsl教程

本篇文件介绍了在windows系统使用vscode如何连接使用wsl&#xff0c;方便wsl在vscode进行开发。 1、插件安装 双击桌面vscode&#xff0c;按快捷键CtrlShiftX打开插件市场&#xff0c;搜索【WSL】点击安装即可。 2、开启WSL的linux子系统 点击左下方图标【Open a Remote Win…...

Qwen2-VL微调体验

1.配置环境 2.数据集准备 3.模型下载 4.注册SwanLab 5.微调 6.训练过程可视化 1.配置环境 本博客使用的是2B模型&#xff0c;所以仅用了单卡3090&#xff0c;若大一点的模型&#xff0c;自行根据实际情况准备显卡 安装Python>3.8 安装Qwen2-VL必要的库 pip install…...

论文的模拟环境和实验环境

模拟环境和实验环境 在撰写SCI计算机领域论文时,模拟环境和实验环境是两个重要的概念,它们之间存在显著的差异。 模拟环境主要是利用计算机、数学方法等手段对实际系统进行描述和分析的过程。在计算机科学中,模拟环境可以用于模拟各种算法、系统或网络的行为,以便在不需要…...

MySQL EXPLAIN 详解:一眼看懂查询计划

在日常的数据库开发中&#xff0c;我们经常需要分析 SQL 查询性能&#xff0c;而 EXPLAIN 是 MySQL 提供的利器&#xff0c;可以帮我们快速理解查询计划&#xff0c;优化慢查询。本文将详细解析 EXPLAIN 的输出字段及其含义&#xff0c;并结合实际案例分享优化思路。 一、什么是…...

自动呼入机器人如何与人工客服进行无缝切换?

自动呼入机器人如何与人工客服进行无缝切换&#xff1f; 原作者&#xff1a;开源呼叫中心FreeIPCC&#xff0c;其Github&#xff1a;https://github.com/lihaiya/freeipcc 自动呼入机器人与人工客服的无缝切换详解 自动呼入机器人与人工客服之间的无缝切换是确保客户体验连续…...

二分类模型的性能评价指标

1. 混淆矩阵 (Confusion Matrix) 预测正类预测负类实际正类 (P)True Positive (TP)False Negative (FN)实际负类 (N)False Positive (FP)True Negative (TN) True Positive (TP): 模型正确预测为正类的样本数。True Negative (TN): 模型正确预测为负类的样本数。False Positi…...

鸿蒙操作系统简介

华为鸿蒙系统&#xff08;HUAWEI HarmonyOS&#xff09;&#xff0c;是华为公司于2019年8月9日在东莞举行的华为开发者大会&#xff08;HDC.2019&#xff09;上正式发布的面向全场景的分布式操作系统&#xff0c;可以创造一个超级虚拟终端互联的世界&#xff0c;将人、设备、场…...

单片机:实现蜂鸣器数码管的显示(附带源码)

单片机实现蜂鸣器数码管显示 蜂鸣器和数码管在嵌入式系统中广泛应用。蜂鸣器可以发出声音警告或提示&#xff0c;而数码管则用于显示数字或字母。在本项目中&#xff0c;我们将通过8051单片机实现一个控制蜂鸣器和数码管显示的系统&#xff0c;结合使用蜂鸣器和数码管&#xf…...

C语言期末复习笔记(上)

目录 一、为什么要学习C语言 1.C语言适合做什么 2.开发C程序的步骤 3.常用术语 二、C语言数据结构 1.常量与变量 &#xff08;1&#xff09;常量 ​编辑 &#xff08;2&#xff09;变量 2.数据类型 ​编辑 &#xff08;1&#xff09;数据类型的分类 &#xff08;2&a…...

HarmonyOS 实时监听与获取 Wi-Fi 信息

文章目录 摘要项目功能概述代码模块详细说明创建 Wi-Fi 状态保存对象Wi-Fi 状态监听模块获取当前 Wi-Fi 信息整合主模块 运行效果展示性能分析总结 摘要 本文展示了如何使用 HarmonyOS 框架开发一个 Demo&#xff0c;用于监听手机的 Wi-Fi 状态变化并实时获取连接的 Wi-Fi 信息…...

Unity超优质动态天气插件(含一年四季各种天气变化,可用于单机局域网VR)

效果展示&#xff1a;https://www.bilibili.com/video/BV1CkkcYHENf/?spm_id_from333.1387.homepage.video_card.click 在你的项目中设置enviro真的很容易&#xff01;导入包裹并按照以下步骤操作开始的步骤&#xff01; 1. 拖拽“EnviroSky”预制件&#xff08;“environme…...

1 JVM JDK JRE之间的区别以及使用字节码的好处

JDK jdk是编译java源文件成class文件的&#xff0c;我们使用javac命令把java源文件编译成class文件。 我们在java安装的目录下找到bin文件夹&#xff0c;如下图所示: 遵循着编译原理&#xff0c;把java源文件编译成JVM可识别的机器码。 其中还包括jar打包工具等。主要是针对…...

【网络安全】网站常见安全漏洞—服务端漏洞介绍

文章目录 网站常见安全漏洞—服务端漏洞介绍引言1. 第三方组件漏洞什么是第三方组件漏洞&#xff1f;如何防范&#xff1f; 2. SQL 注入什么是SQL注入&#xff1f;如何防范&#xff1f; 3. 命令执行漏洞什么是命令执行漏洞&#xff1f;如何防范&#xff1f; 4. 越权漏洞什么是越…...