当前位置: 首页 > news >正文

(8)YOLOv6算法基本原理

一、YOLOv6 模型原理

  • 发布日期:2022年6月

  • 作者:美团技术团队

骨干网络:参考了 RepVGG 的设计,将重参数化能力进行补强,增强了模型结构的重参数化能力。使用了深度可分离卷积和跨阶段连接等技术,旨在提升模型的准确性和效率。使用轻量化网络作为基础网络,名为 EfficientRep 。

20241212203624

颈部结构:使用特征金字塔网络(Rep-PAN)来实现特征融合,并保持较好的多尺度特征融合能力。其通过步长为2的重参数化卷积层替换普通卷积层,减少了模型的内存需求。受 RepVGG 启发,YOLOv6 的颈部设计也追求了高效的特征传递和重参数化策略。

20241212203929

输出端: YOLOv6 将边框回归和类别的分类过程分开,不仅加快了收敛速度,也降低了计算l量。

内存与延迟:YOLOv6 在改进计算效率和模型大小的同时可能在 GPU 上增加了一定的计算延迟,同时节约了内存带宽。

目标检测性能:通过这些技术的改进,YOLOv6力图达到在保持高检测精度的同时减少模型的计算量和内存占用,加强整体模型的环境适应能力

20241212202627

二、YOLOv6 和YOLOv5的差异

区别1:首先,它将骨干网络从 CSPDarknet53 转换为一种高效的可重参数化的 EfficientRep 网络。

区别2:在训练阶段,EfficientRep 网络主要由 RepBlock 组成,其中 RepBlock 包含多个 RepVGGBlock。

区别3:在推理阶段,RepBlock 可以重参数化为单分支的 VGG 式结构,从而在不明显影响精度的情况下显著提高推理速度。

区别4:其次,YOLOv6 采用了修改后的 Rep-PAN拓扑结构作为颈部网络,取代了 YOLOv5 中使用的 CSP-Block。这旨在实现高效推理的同时,保持较好的多尺度特征融合能力。

区别5:最后,为解决 YOLOv5 中耦合头部导致的分类和定位两分支参数强行共享问题,YOLOv6 引入了混合通道策略,将多分支输出头的分类和回归分支解耦,分别经过不同的卷积层去学习各自的参数,从而构建更高效的解耦头部。

三、往期回顾

yolo入门教程:《吐血录制,yolo11猫狗实时检测实战项目,从零开始写yolov11代码》,视频全程25分钟。

image-20241212090014863

(1)yolo11猫狗实时检测实战项目,从零开始写yolov11代码

(2)从零开始学yolo之yolov1的技术原理

(3)YOLOv1训练过程,新手入门

(4)YOLOv2和yolov1的差异

(5)YOLOv3和yolov1、yolov2之间的差异

(6)YOLOv4算法基本原理以及和YOLOv3 的差异

(13)10张结构图,深入理解YOLOv11算法各个模块

高清视频,3分钟揭秘神经网络技术原理

在这里插入图片描述

Transfermer的Q、K、V设计的底层逻辑

相关文章:

(8)YOLOv6算法基本原理

一、YOLOv6 模型原理 发布日期:2022年6月 作者:美团技术团队 骨干网络:参考了 RepVGG 的设计,将重参数化能力进行补强,增强了模型结构的重参数化能力。使用了深度可分离卷积和跨阶段连接等技术,旨在提升…...

LNMP+discuz论坛

0.准备 文章目录 0.准备1.nginx2.mysql2.1 mysql82.2 mysql5.7 3.php4.测试php访问mysql5.部署 Discuz6.其他 yum源: # 没有wget,用这个 # curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo[rootlocalhost ~]#…...

在linux系统的docker中安装GitLab

一、安装GitLab: 在安装了docker之后就是下载安装GitLab了,在linux系统中输入命令:docker search gitlab就可以看到很多项目,一般安装第一个,它是英文版的,如果英文不好可以安装twang2218/gitlab-ce-zh。 …...

Python面试常见问题及答案12

问题: 请解释Python中的GIL(全局解释器锁)是什么? ○ 答案: GIL是Python解释器中的一种机制,用于确保任何时候只有一个线程在执行Python字节码。这在多线程场景下可能影响性能优化,但对于单线程…...

从0-1开发一个Vue3前端系统页面-9.博客页面布局

本节主要实现了博客首页界面的基本布局并完善了响应式布局,因为完善了响应式布局故对前面的页面布局有所改动,这里会将改动后的源码同步上传。 1.对页面头部的用户信息进行设计和美化 布局设计参考 :通常初级前端的布局会通过多个div划分区域…...

[手机Linux] 六,ubuntu18.04私有网盘(NextCloud)安装

一,LNMP介绍 LNMP一键安装包是一个用Linux Shell编写的可以为CentOS/RHEL/Fedora/Debian/Ubuntu/Raspbian/Deepin/Alibaba/Amazon/Mint/Oracle/Rocky/Alma/Kali/UOS/银河麒麟/openEuler/Anolis OS Linux VPS或独立主机安装LNMP(Nginx/MySQL/PHP)、LNMPA(Nginx/MySQ…...

白话java设计模式

创建模式 单例模式(Singleton Pattern): 就是一次创建多次使用,它的对象不会重复创建,可以全局来共享状态。 工厂模式(Factory Method Pattern): 可以通过接口来进行实例化创建&a…...

助力 Tuanjie OpenHarmony 开发:如何使用工具包 Hilog 和 SDK Kits Package?

随着团结引擎从 1.0.0 迭代至 1.3.0,越来越多的开发者开始使用团结引擎开发 OpenHarmony 应用。 在开发的过程中,我们也收到了大量反馈,尤其是在日志、堆栈和性能数据方面,这些信息对开发和调试过程至关重要。同时,我…...

NSDT 3DConvert:高效实现大模型文件在线预览与转换

NSDT 3DConvert 作为一个 WebGL 展示平台,能够实现多种模型格式免费在线预览,并支持大于1GB的OBJ、STL、GLTF、点云等模型进行在线查看与交互,这在3D模型展示领域是一个相当强大的功能。 平台特点 多格式支持 NSDT 3DConvert兼容多种3D模型…...

电商数据采集电商,行业数据分析,平台数据获取|稳定的API接口数据

电商数据采集可以通过多种方式完成,其中包括人工采集、使用电商平台提供的API接口、以及利用爬虫技术等自动化工具。以下是一些常用的电商数据采集方法: 人工采集:人工采集主要是通过基本的“复制粘贴”的方式在电商平台上进行数据的收集&am…...

VUE+Node.js+mysq实现响应式个人博客|项目初始化+路由配置+基础组件搭建

Day 1 开发文档:项目初始化与基础架构搭建 一、项目初始化 1. 创建项目 首先,我们使用 Vite 创建一个基于 Vue 3 的项目: # 创建项目 npm create vitelatest my-blog -- --template vue # 这条命令会创建一个名为 my-blog 的新项目&#…...

Python如何正确解决reCaptcha验证码(9)

前言 本文是该专栏的第73篇,后面会持续分享python爬虫干货知识,记得关注。 我们在处理某些国内外平台项目的时候,相信很多同学或多或少都见过,如下图所示的reCaptcha验证码。 而本文,笔者将重点来介绍在实战项目中,遇到上述中的“reCaptcha验证码”,如何正确去处理并解…...

web3跨链预言机协议-BandProtocol

项目简介 Band Protocol 项目最初于 2017年成立并建立在 ETH 之上。后于2020年转移到了 Cosmos 网络上,基于 Cosmos SDK 搭建了一条 Band Chain 。这是一条 oracle-specific chain,主要功能是提供跨链预言机服务。Cosmos生态上第一个,也是目…...

JAVA将集合切分成指定份数(简易)

JAVA将集合切分成指定份数 主要方法 /** * 主要方法* param list 切分的集合* param count 切成的份数* return*/ public static List<List> splitList(List list,int count){if(count <0 ){return Lists.newArrayList();}List<List> result Lists.newArrayL…...

深度神经网络(DNN)在时序预测中的应用与缺陷

目录 ​编辑 一、DNN在时序预测中的应用 二、DNN的缺陷 三、技术挑战与未来趋势 四、结论 随着大数据时代的到来&#xff0c;深度学习技术在时序预测领域扮演着越来越重要的角色。深度神经网络&#xff08;DNN&#xff09;因其强大的非线性拟合能力和自动特征提取能力&…...

springboot445新冠物资管理(论文+源码)_kaic

摘 要 使用旧方法对新冠物资管理的信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在新冠物资管理的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及时纠正等问题。这次开发的新冠物资管…...

C++算法第十一天

本篇文章我们继续学习动态规划 目录 第一题 题目链接 题目解析 代码原理 代码编写 第二题 题目链接 题目解析 代码原理 代码编写 第三题 题目链接 题目解析 代码原理 代码编写 第四题 题目链接 题目解析 代码原理 代码编写 第五题 题目链接 题目解析 代…...

常 用 类

一、 Object 类 1. Object 类的介绍 (1) Object 类位于 java.lang 包中&#xff0c;是继承关系的根类、超类&#xff0c;是所有类的父类 ( 直接的父类或是间接父类 ) (2) Object 类型的引用可以用于存储任意类型的对象。 (3) Object 类中定义方法&#xff0c;所有类都可以…...

ACL(访问控制列表)

ACL技术概述 • 随着网络的飞速发展&#xff0c;网络安全和网络服务质量 QoS &#xff08; Quality of Service &#xff09;问题日益突出。 ▫ 园区重要服务器资源被随意访问&#xff0c;园区机密信息容易泄露&#xff0c;造成安全隐患。 ▫ Internet 病毒肆意侵略园区内网&am…...

json字符串转json

问题 Json格式化后&#xff0c;存在各种\n ,\r,以及空格&#xff0c;怎么办&#xff1f; 直接replaceAlll(“\s”,“”) 吗&#xff1f; 解决办法&#xff1a; //使用hutool的jsonutil工具&#xff0c;直接将其转换为json&#xff0c;再转string, //这样就不需要使用 各种re…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...