KS曲线python实现
目录
- 实战
实战
# 导入第三方模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt# 自定义绘制ks曲线的函数
def plot_ks(y_test, y_score, positive_flag):# 对y_test重新设置索引y_test.index = np.arange(len(y_test))# 构建目标数据集target_data = pd.DataFrame({'y_test':y_test, 'y_score':y_score})# 按y_score降序排列target_data.sort_values(by = 'y_score', ascending = False, inplace = True)# 自定义分位点cuts = np.arange(0.1,1,0.1)# 计算各分位点对应的Score值index = len(target_data.y_score)*cutsscores = np.array(target_data.y_score)[index.astype('int')]# 根据不同的Score值,计算Sensitivity和SpecificitySensitivity = []Specificity = []for score in scores:# 正例覆盖样本数量与实际正例样本量positive_recall = target_data.loc[(target_data.y_test == positive_flag) & (target_data.y_score>score),:].shape[0]positive = sum(target_data.y_test == positive_flag)# 负例覆盖样本数量与实际负例样本量negative_recall = target_data.loc[(target_data.y_test != positive_flag) & (target_data.y_score<=score),:].shape[0]negative = sum(target_data.y_test != positive_flag)Sensitivity.append(positive_recall/positive)Specificity.append(negative_recall/negative)# 构建绘图数据plot_data = pd.DataFrame({'cuts':cuts,'y1':1-np.array(Specificity),'y2':np.array(Sensitivity), 'ks':np.array(Sensitivity)-(1-np.array(Specificity))})# 寻找Sensitivity和1-Specificity之差的最大值索引max_ks_index = np.argmax(plot_data.ks)plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y1.tolist()+[1], label = '1-Specificity')plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y2.tolist()+[1], label = 'Sensitivity')# 添加参考线plt.vlines(plot_data.cuts[max_ks_index], ymin = plot_data.y1[max_ks_index], ymax = plot_data.y2[max_ks_index], linestyles = '--')# 添加文本信息plt.text(x = plot_data.cuts[max_ks_index]+0.01,y = plot_data.y1[max_ks_index]+plot_data.ks[max_ks_index]/2,s = 'KS= %.2f' %plot_data.ks[max_ks_index])# 显示图例plt.legend()# 显示图形plt.show()# 导入虚拟数据
virtual_data = pd.read_excel(r'virtual_data.xlsx')
# 应用自定义函数绘制k-s曲线
plot_ks(y_test = virtual_data.Class, y_score = virtual_data.Score,positive_flag = 'P')
相关文章:

KS曲线python实现
目录 实战 实战 # 导入第三方模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt# 自定义绘制ks曲线的函数 def plot_ks(y_test, y_score, positive_flag):# 对y_test重新设置索引y_test.index np.arange(len(y_test))# 构建目标数据集target_dat…...

解决matplotlib中文乱码问题
进入python,查看缓存 import matplotlib as mpl print(mpl.get_cachedir())如果结果为/Users/xxx/.matplotlib 那么就rm -rf /Users/xxx/.matplotlib 然后 mkdir ~/.fonts cd ~/.fonts wget http://129.204.205.246/downloads/SimHei.ttfsudo apt-get install fo…...

实操给桌面机器人加上超拟人音色
前面我们讲了怎么用CSK6大模型开发板做一个桌面机器人充当AI语音助理,近期上线超拟人方案,不仅大模型语音最快可以1秒内回复,还可以让我们的桌面机器人使用超拟人音色、具备声纹识别等能力,本文以csk6大模型开发板为例实操怎么把超…...

git stash 的文件如何找回
在Git中,如果你使用了git stash命令来保存你的工作进度,但之后想要找回这些被stash的文件,你可以按照以下步骤进行操作: 1. 查看stash列表 首先,使用git stash list命令来查看当前保存的所有stash记录。这个命令会列出…...

皮肤伤口分割数据集labelme格式248张5类别
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):284 标注数量(json文件个数):284 标注类别数:5 标注类别名称:["bruises","burns","cu…...

uni-app开发AI康复锻炼小程序,帮助肢体受伤患者康复!
**提要:**近段时间我们收到多个康复机构用户,咨询AI运动识别插件是否可以应用于肢力运动受限患者的康复锻炼中来,插件是可以应用到AI康复锻炼中的,今天小编就为您介绍一下AI运动识别插件在康腹锻炼中的应用场景。 一、康复机构的应…...

双内核架构 Xenomai 4 安装教程
Xenomai 4是一种双内核架构, 继承了Xenomai系列的特点,通过在Linux内核中嵌入一个辅助核心(companion core),来提供实时能力。这个辅助核心专门处理那些需要极低且有界响应时间的任务。 本文将在官网教程(https://evlproject.org/…...

【redis的使用、账号流程、游戏服Handler的反射调用】1.自增id 2.全局用户名这样子名字唯一 3.
一、web服 1)账号注册 // 用于唯一命名服务 com.xinyue.game.center.business.account.logic.AccountRegisterService#accountRegister public void accountRegister(AccountEntity account) {accountManager.checkUsername(account.getUsername());accountManager.checkPass…...

neo4j 图表数据导入到 TuGraph
neo4j 图表数据导入到 TuGraph 代码文件说明后文 前言:近期在引入阿里的 TuGraph 图数据库,需要将 原 neo4j 数据导入到新的 tugraph 数据库中。预期走csv文件导入导出,但因为格式和数据库设计问题,操作起来比较麻烦(可能是个人没…...

启动报错java.lang.NoClassDefFoundError: ch/qos/logback/core/status/WarnStatus
报错信息图片 日志: Exception in thread "Quartz Scheduler [scheduler]" java.lang.NoClassDefFoundError: ch/qos/logback/core/status/WarnStatus先说我自己遇到的问题,我们项目在web设置了自定义的log输出路径,多了一个 / 去…...

【ubuntu18.04】ubuntu18.04挂在硬盘出现 Wrong diagnostic page; asked for 1 got 8解决方案
错误日志 [ 8754.700227] usb 2-3: new full-speed USB device number 3 using xhci_hcd [ 8754.867389] usb 2-3: New USB device found, idVendor0e0f, idProduct0002, bcdDevice 1.00 [ 8754.867421] usb 2-3: New USB device strings: Mfr1, Product2, SerialNumber0 [ 87…...

kubeadm安装K8s高可用集群之集群初始化及master/node节点加入calico网络插件安装
系列文章目录 1.kubeadm安装K8s高可用集群之基础环境配置 2.kubeadm安装K8s集群之高可用组件keepalivednginx及kubeadm部署 3.kubeadm安装K8s高可用集群之集群初始化及master/node节点加入集群calico网络插件安装 kubeadm安装K8s高可用集群之集群初始化及master/node节点加入ca…...

游戏何如防抓包
游戏抓包是指在游戏中,通过抓包工具捕获和分析游戏客户端与服务器之间传输的封包数据的过程。抓包工具可实现拦截、篡改、重发、丢弃游戏的上下行数据包,市面上常见的抓包工具有WPE、Fiddler和Charles Proxy等。 抓包工具有两种实现方式,一类…...

【LeetCode】每日一题 2024_12_19 找到稳定山的下标(模拟)
前言 每天和你一起刷 LeetCode 每日一题~ 最近力扣的每日一题出的比较烂,难度过山车,导致近期的更新都三天打鱼,两天断更了 . . . LeetCode 启动! 题目:找到稳定山的下标 代码与解题思路 先读题:最重要…...

运维 mysql、redis 、RocketMQ性能排查
MySQL查看数据库连接数 1. SHOW STATUS命令-查询当前的连接数 MySQL 提供了一个 SHOW STATUS 命令,可以用来查看服务器的状态信息,包括当前的连接数。 SHOW STATUS LIKE Threads_connected;这个命令会返回当前连接到服务器的线程数,即当前…...

[SAP ABAP] 将内表数据转换为HTML格式
从sflight数据库表中检索航班信息,并将这些信息转换成HTML格式,然后下载或显示在前端 开发步骤 ① 自定义一个数据类型 ty_sflight 来存储航班信息 ② 声明内表和工作区变量,用于存储表头、字段、HTML内容和航班详细信息以及创建字段目录lt…...

LLM大语言模型私有化部署-使用Dify与Qwen2.5打造专属知识库
背景 Dify 是一款开源的大语言模型(LLM) 应用开发平台。其直观的界面结合了 AI 工作流、 RAG 管道、 Agent 、模型管理、可观测性功能等,让您可以快速从原型到生产。相比 LangChain 这类有着锤子、钉子的工具箱开发库, Dify 提供了更接近生产需要的完整…...

使用C语言连接MySQL
在C语言中连接MySQL数据库,通常需要使用MySQL提供的C API。以下是使用C语言连接MySQL数据库的基本步骤和示例代码: 步骤 1: 安装MySQL C API 首先,确保你的系统上安装了MySQL数据库,并且安装了MySQL C API库。在大多数Linux发行版…...

PyTorch 2.0 以下版本中设置默认使用 GPU 的方法
PyTorch 2.0 以下版本中设置默认使用 GPU 的方法 在 PyTorch 2.0以下版本中,默认情况下仍然是使用 CPU 进行计算,除非明确指定使用 GPU。在 PyTorch 2.0 以下版本中,虽然没有 torch.set_default_device 的便捷方法,但可以通过显式…...

信号槽【QT】
文章目录 对象树字符集信号槽QT坐标系信号与槽connect自定义槽自定义信号disconnect 对象树 #ifndef MYLABEL_H #define MYLABEL_H#include<QLabel> class MyLabel : public QLabel { public:// 构造函数使用带 QWidget* 版本的.// 确保对象能够加到对象树上MyLabel(QWi…...

【UE5 C++课程系列笔记】10——动态单播/多播的基本使用
目录 概念 申明动态委托 一、DECLARE_DYNAMIC_DELEGATE 二、DECLARE_DYNAMIC_MULTICAST_DELEGATE 绑定动态委托 一、BindDynamic 二、AddDynamic 三、RemoveDynamic 执行动态委托 一、Execute 二、ExecuteIfBound 三、IsBound 四、Broadcast 动态单播使用示…...

点击展示大图预览
原文链接在table表格里能够实现,点击里面的图片实现大图预览的效果; 一、先安装viewer — 使用npm安装 npm install v-viewer --save二、在main.js中引入 import Viewer from v-viewer //点击图片大图预览 import viewerjs/dist/viewer.css Vue.use(…...

【C++】分书问题:深入解析、回溯法高级应用与理论拓展
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述💯思路与算法回溯法理论基础 💯代码实现与解析完整代码代码关键步骤解析 💯时间复杂度与空间复杂度分析💯理论拓展&…...

java开发入门学习五-流程控制
流程控制语句 if, if...else, if..else if..else 与前端相同 略 switch case 与前端不同的是case不能使用表达式,使用表达式会报错 class TestSwitch {public static void main(String[] args) {// switch 表达式只能是特定的数据类型…...

【FFmpeg 教程 一】截图
本章使用 ffmpeg 实现观影中经常会用到的功能,截图。 以下给出两种方式。 课程需具备的基础能力:Python 1. 使用 subprocess 调用 FFmpeg 命令 import subprocess def extract_frame(video_path, output_image_path, timestamp"00:00:05")&qu…...

北邮,成电计算机考研怎么选?
#总结结论: 基于当前提供的24考研复录数据,从报考性价比角度,建议25考研的同学优先选择北邮计算机学硕。主要原因是:相比成电,北邮计算机学硕的目标分数更低,录取率更高,而且北邮的地理位置优势明显。对于…...

深入了解京东API接口:如何高效获取商品详情与SKU信息
在当今数字化时代,电商平台的数据接口成为了连接商家与消费者的桥梁。京东作为国内领先的电商平台,其API接口为开发者提供了丰富的商品信息获取途径。本文将深入探讨如何使用京东API接口高效获取商品详情与SKU信息,并附上简短而实用的代码示例…...

C++常见内存泄漏案例分析以及解决方案
C 常见内存泄漏案例分析以及解决方案 1. 分配与释放不匹配 在动态内存管理中,使用new操作符分配的内存必须通过delete操作符显式释放。若未遵循这一规则,将导致内存泄漏。例如: int *p new int; p new int; // 错误:未释放先…...

[LeetCode-Python版]206. 反转链表(迭代+递归两种解法)
题目 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例 3࿱…...

70 mysql 中事务的隔离级别
前言 mysql 隔离级别有四种 未提交读, 已提交读, 可重复度, 序列化执行 然后不同的隔离级别存在不同的问题 未提交读存在 脏读, 不可重复度, 幻觉读 等问题 已提交读存在 不可重复度, 幻觉读 等问题 可重复读存在 幻觉读 等问题 序列化执行 没有以上问题 然后 我们这里…...