当前位置: 首页 > news >正文

基于LSTM长短期记忆神经网络的多分类预测【MATLAB】

在深度学习中,长短期记忆网络(LSTM, Long Short-Term Memory)是一种强大的循环神经网络(RNN)变体,专门为解决序列数据中的长距离依赖问题而设计。LSTM因其强大的记忆能力,广泛应用于自然语言处理、时间序列分析和语音识别等任务中。本文将详细介绍LSTM的原理、结构以及其在多分类预测中的实现。

一、LSTM

LSTM由Hochreiter和Schmidhuber在1997年提出,是一种能够有效避免传统RNN梯度消失或梯度爆炸问题的网络架构。与传统RNN不同,LSTM通过引入记忆单元(Cell State)和门控机制(Gate Mechanism),实现了对长时间序列依赖信息的捕获和控制。

二、LSTM的核心结构与工作原理

LSTM的核心在于其结构中包含的三个门:
输入门(Input Gate):控制新信息对记忆单元的更新程度。
遗忘门(Forget Gate):决定需要忘记的历史信息。
输出门(Output Gate):决定当前时间步需要输出的信息。

1. 记忆单元(Cell State)
记忆单元是LSTM中存储信息的核心组件,其状态可以通过门控机制进行动态更新。
2. 遗忘门
遗忘门控制需要从记忆单元中移除的信息
3. 输入门
输入门决定新信息加入记忆单元的程度
4. 输出门
输出门决定隐藏状态的更新

三、LSTM的优势

解决梯度问题:通过门控机制有效缓解梯度消失或爆炸问题。
强大的记忆能力:能够记住序列中的长距离依赖信息。
广泛适用性:在时间序列预测、文本分类、语音处理等任务中表现卓越。

四、LSTM部分代码与参数设置

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
% res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
L = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: L)';
T_train = res(1: num_train_s, L + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: L)';
T_test = res(num_train_s + 1: end, L + 1: end)';
N = size(P_test, 2);%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法'MiniBatchSize', 128, ...               % 批大小'MaxEpochs', 1000, ...                  % 最大迭代次数'InitialLearnRate', 1e-2, ...           % 初始学习率'LearnRateSchedule', 'piecewise', ...   % 学习率下降'LearnRateDropFactor', 0.1, ...         % 学习率下降因子'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集'ValidationPatience', Inf, ...          % 关闭验证'Plots', 'training-progress', ...       % 画出曲线'Verbose', false);

五、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、代码与数据集下载

下载地址:https://mbd.pub/o/bread/Z5yclJ9p

相关文章:

基于LSTM长短期记忆神经网络的多分类预测【MATLAB】

在深度学习中,长短期记忆网络(LSTM, Long Short-Term Memory)是一种强大的循环神经网络(RNN)变体,专门为解决序列数据中的长距离依赖问题而设计。LSTM因其强大的记忆能力,广泛应用于自然语言处理…...

物联网:全面概述、架构、应用、仿真工具、挑战和未来方向

中文论文标题:物联网:全面概述、架构、应用、仿真工具、挑战和未来方向 英文论文标题:Internet of Things: a comprehensive overview, architectures, applications, simulation tools, challenges and future directions 作者信息&#x…...

volatility2工具的使用vol2工具篇

vol2工具 命令格式:vol.py -f [image] --profile[profile] [plugin] 1、查看系统的操作版本,系统镜像信息 2.查看用户名密码信息,当前操作系统中的password hash,例如SAM文件内容 3.从注册表提取LSA密钥信息(已解密&…...

R 基础运算

R 基础运算 R 是一种广泛使用的统计编程语言,它提供了强大的数据操作和分析功能。基础运算在 R 中非常重要,因为它们是进行更复杂计算和数据分析的基础。本文将详细介绍 R 中的基础运算,包括算术运算、逻辑运算、向量化和矩阵运算。 一、算…...

javaScriptBOM

1.1、BOM概述 1.1.1、BOM简介 BOM(browser Object)即浏览器对象模型,它提供了独立于内容而与浏览器窗口进行交互的对象,其核心对象是window。 BOM由一系列的对象构成,并且每个对象都提供了很多方法与属性 BOM缺乏标准…...

Godot RPG 游戏开发指南

Godot RPG 游戏开发指南 一、基础准备 1. 开发环境 下载并安装最新版 Godot 4.x选择使用 GDScript 或 C# 作为开发语言准备基础美术资源(角色、地图、道具等) 2. 项目结构 project/ ├── scenes/ # 场景文件 ├── scripts/ # 脚…...

目标检测数据集图片及标签同步旋转角度

前言 在深度学习领域,尤其是目标检测任务中,数据集的质量直接影响模型的性能。为了提升模型的鲁棒性和对各种场景的适应能力,数据增强技术被广泛应用于图像数据集处理。旋转角度是常见的数据增强方法,通过对图像及其对应的标签&am…...

2025前端面试热门题目——计算机网络篇

计算机网络篇——面试 1. 到底什么是 TCP 连接? TCP 连接的定义 TCP(传输控制协议)是一个面向连接的传输层协议。TCP 连接是通过 三次握手 确立的可靠数据通信链路,保证了在不可靠网络(如互联网)上的数据传输的准确…...

LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS---正文

题目 最少到最多的提示使大型语言模型能够进行复杂的推理 论文地址:https://arxiv.org/abs/2205.10625 摘要 思路链提示在各种自然语言推理任务中表现出色。然而,它在需要解决比提示中显示的示例更难的问题的任务上表现不佳。为了克服这种由易到难的概括…...

Java开发经验——日志治理经验

摘要 本文主要介绍了Java开发中的日志治理经验,包括系统异常日志、接口摘要日志、详细日志和业务摘要日志的定义和目的,以及错误码规范和异常处理规范。强调了日志治理的重要性和如何通过规范化错误码和日志格式来提高系统可观测性和问题排查效率。 1. …...

使用复数类在C#中轻松绘制曼德布洛集分形

示例在 C# 中绘制曼德布洛特集分形解释了如何通过迭代以下方程来绘制曼德布洛特集: 其中 Z(n) 和 C 是复数。程序迭代此方程,直到 Z(n) 的大小至少为 2 或程序执行最大迭代次数。 该示例在单独的变量中跟踪数字的实部和虚部。此示例使用Complex类来更轻松…...

VSCode 启用免费 Copilot

升级VSCode到 1.96版本,就可以使用每个月2000次免费额度了,按照工作日每天近80次免费额度,满足基本需求。前两天一直比较繁忙,今天周六有时间正好体验一下。 引导插件安装GitHub Copilot - Visual Studio Marketplace Extension f…...

常见问题整理

DevOps 和 CICD DevOps 全称Development & Operation 一种实现开发和运维一体化的协同模式,提供快速交付应用和服务的能力 用于协作:开发,部署,质量测试 整体生命周期工作内容,最终实现持续继承,持续部…...

使用Vue创建前后端分离项目的过程(前端部分)

前端使用Vue.js作为前端开发框架,使用Vue CLI3脚手架搭建项目,使用axios作为HTTP库与后端API交互,使用Vue-router实现前端路由的定义、跳转以及参数的传递等,使用vuex进行数据状态管理,后端使用Node.jsexpress&#xf…...

【Springboot知识】Redis基础-springboot集成redis相关配置

文章目录 1. 添加依赖2. 配置Redis连接3. 配置RedisTemplate(可选)4. 使用RedisTemplate或StringRedisTemplate5. 测试和验证 集群配置在application.properties中配置在application.yml中配置 主从配置1. 配置Redis服务器使用配置文件使用命令行 2. 配置…...

网络安全概论——身份认证

一、身份证明 身份证明可分为以下两大类 身份验证——“你是否是你所声称的你?”身份识别——“我是否知道你是谁?” 身份证明系统设计的三要素: 安全设备的系统强度用户的可接受性系统的成本 实现身份证明的基本途径 所知:个…...

OpenHarmony-4.HDI 框架

HDI 框架 1.HDI介绍 HDI(Hardware Device Interface,硬件设备接口)是HDF驱动框架为开发者提供的硬件规范化描述性接口,位于基础系统服务层和设备驱动层之间,是连通驱动程序和系统服务进行数据流通的桥梁,是…...

leecode494.目标和

这道题目第一眼感觉就不像是动态规划&#xff0c;可以看出来是回溯问题&#xff0c;但是暴力回溯超时&#xff0c;想要用动态规划得进行一点数学转换 class Solution { public:int findTargetSumWays(vector<int>& nums, int target) {int nnums.size(),bagWeight0,s…...

在Spring中application 的配置属性(详细)

application 的配置属性。 这些属性是否生效取决于对应的组件是否声明为 Spring 应用程序上下文里的 Bean &#xff08;基本是自动配置 的&#xff09;&#xff0c;为一个不生效的组件设置属性是没有用的。 multipart multipart.enabled 开启上传支持&#xff08;默认&a…...

jvm符号引用和直接引用

在解析阶段中,符号引用和直接引用是Java类加载和内存管理中的重要概念,它们之间存在显著的区别。以下是对这两个概念的详细解析: 一、定义与特性 符号引用(Symbolic Reference) 定义:符号引用是编译器生成的用于表示类、方法、字段等的引用方式。特性: 独立性:符号引用…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...