当前位置: 首页 > news >正文

如何创建属于自己的大语言模型:从零开始的指南

如何创建属于自己的大语言模型:从零开始的指南

为什么要创建自己的大语言模型?

随着人工智能的快速发展,大语言模型(LLM)在各种场景中表现出了卓越的能力,例如文本生成、对话交互和内容总结等。虽然市场上已有诸如 OpenAI 的 GPT、Google 的 Bard 等强大的模型,但打造一个属于自己的 LLM 仍有以下独特价值:

  • 定制化:模型可以根据特定领域(如医学、法律)进行优化。
  • 数据隐私:掌控自己的数据,确保隐私安全。
  • 成本效益:长远来看,自有模型可能比使用外部 API 更经济。

本文将带你了解创建 LLM 的核心步骤,从理论到实践,让你拥有一个自己的智能助手。


大语言模型的核心步骤

1. 数据准备

训练一个 LLM 的第一步是准备高质量的数据集。数据的质量和多样性直接决定了模型的性能。

数据来源:
  • 公开数据集:如 Common Crawl、Wikipedia。
  • 行业特定数据:公司内部文档、研究论文等。
  • 合成数据:通过脚本生成样本数据以增强多样性。
数据预处理:
  • 去除噪声:过滤无关内容、修正格式问题。
  • 数据清洗:如重复数据去重、无效字符清理。
  • 数据标注:根据需要添加标签或分类信息。

2. 模型选择与架构设计

目前主流的大语言模型架构是基于 Transformer 的。

常用框架:
  • TensorFlow / PyTorch:训练和部署的通用深度学习框架。
  • Hugging Face Transformers:提供预训练模型和简化接口。
自主训练还是微调?
  • 从头训练:适用于需要完全自定义的模型。
  • 微调预训练模型:基于现有的预训练模型进行优化,适合大多数场景。

3. 训练硬件与工具

训练 LLM 对硬件的需求极高。

硬件选择:
  • GPU 集群:如 NVIDIA A100、H100。
  • TPU:Google 提供的专用加速硬件。
  • 云服务:AWS、Azure 和 Google Cloud 提供按需算力。
工具链:
  • 分布式训练框架:如 DeepSpeed、Horovod。
  • 参数优化工具:如 Optuna、Ray Tune。

4. 模型评估

评估指标:
  • 语言流畅度:BLEU、ROUGE 等评分。
  • 任务完成度:分类准确率、回答准确性等。
  • 推理速度:延迟和吞吐量。
测试方法:
  • 基准测试:使用标准数据集测试性能。
  • 用户反馈:邀请用户体验并收集意见。

5. 部署与优化

完成训练后,模型需要部署到生产环境并持续优化。

部署方式:
  • 云端部署:通过 API 提供服务。
  • 边缘部署:针对延迟敏感场景的本地部署。
优化策略:
  • 量化:减少模型参数占用的内存和存储。
  • 剪枝:去掉不必要的模型权重以提升推理效率。
  • 蒸馏:通过小模型学习大模型的行为。

实践建议

  1. 合理评估预算:从硬件成本到数据购买,创建 LLM 是一项资源密集型任务。
  2. 重视伦理与隐私:确保训练数据来源合法且不会侵犯用户隐私。
  3. 持续迭代:定期更新模型以适应新需求和新数据。

系列

本文为搭建大语言模型提供了整体框架。在后续文章中,我们将逐步深入探讨以下内容:

  • 数据清洗与标注的最佳实践:如何构建高质量的数据管道。
  • 模型微调的技术细节:让你的模型更符合特定任务需求。
  • 分布式训练的高效实现:在多 GPU 环境下优化性能。
  • 模型评估的全面指南:如何科学地衡量模型的好坏。
  • 部署与优化策略:让模型真正投入到生产环境。

敬请关注后续更新!如果你对某个领域感兴趣,请留言告诉我们,我们会优先分享!

如果本文对你有帮助,别忘了点赞和收藏,也欢迎你在评论区分享你的想法或提问!

相关文章:

如何创建属于自己的大语言模型:从零开始的指南

如何创建属于自己的大语言模型:从零开始的指南 为什么要创建自己的大语言模型? 随着人工智能的快速发展,大语言模型(LLM)在各种场景中表现出了卓越的能力,例如文本生成、对话交互和内容总结等。虽然市场上…...

debian linux 连网自动调整时间 (报错 Unit systemd-timesyncd.service could not be found.)

debian linux 连网自动调整时间 如果有报错 Unit systemd-timesyncd.service could not be found. 就用 apt 装一下 systemd-timesyncd 吧 参考: https://github.com/MichaIng/DietPi/issues/5472 sudo apt-get install systemd-timesyncd... ┌──(kali㉿kali)-[~] └─$ t…...

监控易在汽车制造行业信息化运维中的应用案例

引言 随着汽车制造行业的数字化转型不断深入,信息化类IT软硬件设备的运行状态监控、故障告警、报表报告以及网络运行状态监控等成为了企业运维管理的关键环节。监控易作为一款全面、高效的信息化运维管理工具,在汽车制造行业中发挥着重要作用。本文将结合…...

es使用knn向量检索中numCandidates和k应该如何配比更合适

在Elasticsearch(ES)中,KNN(k-最近邻)向量检索是一种高效的向量相似性搜索方法,广泛应用于推荐系统、图像搜索、自然语言处理等领域。在KNN检索中,k 和 numCandidates 是两个关键参数&#xff0…...

推挽输出和开漏输出

推挽输出:能真正的输出高低电平 开漏输出:无法正真的输出高电平(会分压),高电平时没有驱动能力,需要借助外部上拉电阻完成对外驱动...

Cesium引入天地图、高德、百度地图

这里借助了ceisum-map开源项目进行了实现。 cesium-map中的百度地图存在一定问题,使用矢量地图的时候,感觉地图的样式不太理想,而且卫星底图仅显示了东半球,所以自己写了个一个提供器,也存在一定的问题,在0…...

windows自带16进制转10进制

简单的 A->10 如下 11A9 ---》4521 正数解算(最高位为 0,为正值): 0x11A9 解算为 4521 11A9H 4521D 如果是负数 最高位为 1,为负值): 0xE7B0 解算为 -6220 E7B0H (E7B0H - FFFFH)1 -62…...

Redis应用—9.简单应用汇总

大纲 1.基于Redis实现的简单缓存机制(String数据结构) 2.实现一个最简单的分布式锁(String数据结构) 3.博客网站的文章发布与查看(String数据结构) 4.博客字数统计与文章预览(String数据结构) 5.用户操作日志审计功能(String数据结构) 6.实现一个简单的唯一ID生成器(incr…...

powershell基础(1)

powershell基础(1) 1. 安装PowerShell 首先,确保你的计算机上已经安装了PowerShell。对于Windows 10及更高版本,PowerShell通常是默认安装的。你也可以从微软官网下载并安装最新版本的PowerShell Core。 2. 打开PowerShell 在Windows搜索栏中输入“P…...

【NLP 18、新词发现和TF·IDF】

目录 一、新词发现 1.新词发现的衡量标准 ① 内部稳固 ② 外部多变 2.示例 ① 初始化类 NewWordDetect ② 加载语料信息,并进行统计 ③ 统计指定长度的词频及其左右邻居字符词频 ④ 计算熵 ⑤ 计算左右熵 ​编辑 ⑥ 统计词长总数 ⑦ 计算互信息 ⑧ 计算每个词…...

C# 从控制台应用程序入门

总目录 前言 从创建并运行第一个控制台应用程序,快速入门C#。 一、新建一个控制台应用程序 控制台应用程序是C# 入门时,学习基础语法的最佳应用程序。 打开VS2022,选择【创建新项目】 搜索【控制台】,选择控制台应用(.NET Framew…...

怿星科技联合赛力斯举办workshop活动,进一步推动双方合作

12月18日,由怿星科技与赛力斯汽车联合举办的workshop活动在赛力斯五云湖总部展开,双方嘉宾围绕智能汽车发展趋势、行业前沿技术、汽车电子网络与功能测试等核心议题展开了深度对话与交流,并现场参观演示了多套前沿产品。怿星科技CEO潘凯、汽车…...

JVM和数据库面试知识点

JVM内存结构 主要有几部分:堆、栈、方法区和程序计数器 堆是JVM中最大的一块内存区域,用于存储对象实例,一般通过new创建的对象都存放在堆中。堆被所有的线程共享,但是它的访问时线程不安全的,通常通过锁的机制来保证线…...

批量提取zotero的论文构建知识库做问答的大模型(可选)——含转存PDF-分割统计PDF等

文章目录 提取zotero的PDF上传到AI平台保留文件名代码分成20个PDF视频讲解 提取zotero的PDF 右键查看目录 发现目录为 C:\Users\89735\Zotero\storage 写代码: 扫描路径‘C:\Users\89735\Zotero\storage’下面的所有PDF文件,全部复制一份汇总到"C:\Users\89735\Downl…...

Codeforces Round 993 (Div. 4)个人训练记录

Codeforces Round 993 (Div. 4) 只选择对我有价值的题目记录 E. Insane Problem 题目描述 给定五个整数 k k k, l 1 l_1 l1​, r 1 r_1 r1​, l 2 l_2 l2​ 和 r 2 r_2 r2​,Wave 希望你帮助她计算满足以下所有条件的有序对 …...

【优选算法---分治】快速排序三路划分(颜色分类、快速排序、数组第K大的元素、数组中最小的K个元素)

一、颜色分类 题目链接: 75. 颜色分类 - 力扣(LeetCode) 题目介绍: 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地 对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序…...

Spring Cloud OpenFeign

概述 Feign是一个声明式web服务客户端。可以像写接口一样定义http客户端。Feign还支持可插拔的编码器和解码器。Spring Cloud增加了对Spring MVC注释和使用Spring Web中默认使用的HttpMessageConverter的支持。Spring Cloud集成了Ribbon和Eureka,以及Spring Cloud L…...

Oracle 数据库函数的用法(一)

Oracle数据库提供了大量的内置函数,可以用于完成各种操作,如字符串操作,数学计算,日期时间处理,条件判断,序列生成,聚合统计等。以下是一些常用的Oracle数据库函数: 一、oracle 使用…...

【C2C+GRCC】Exploring Disentangled Content Information for Face Forgery Detection

文章目录 Exploring Disentangled Content Information for Face Forgery Detection背景key points研究贡献方法增强解纠缠特性的独立性实验数据内评估跨方法评估跨数据集评估消融实验总结Exploring Disentangled Content Information for Face Forgery Detection 会议/期刊:…...

springboot461学生成绩分析和弱项辅助系统设计(论文+源码)_kaic

摘 要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装学生成绩分析和弱项辅助系统软件来发挥其高效地信息处理的作…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...