当前位置: 首页 > news >正文

【线性代数】理解矩阵乘法的意义(点乘)

刚接触线性代数时,很不理解矩阵乘法的计算规则,为什么规则定义的看起来那么有规律却又莫名其妙,现在参考了一些资料,回过头重新总结下个人对矩阵乘法的理解(严格来说是点乘)。

理解矩阵和矩阵的乘法,可以先理解矩阵和向量的乘法,因为矩阵可以看成是不同列向量的集合。

下面从基变换视角理解矩阵的乘法原理,基变换视角是将矩阵的每个列向量看成是新基坐标系中的一个基坐标。

先考虑一个规则的 2x2 的矩阵和一个 2x1 的向量之间的乘法,例如:
[ 1 − 2 1 2 ] [ 1 1 ] = [ − 1 3 ] \begin{bmatrix} 1&-2 \\ 1&2 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} -1\\ 3 \end{bmatrix} [1122][11]=[13]
后面为了方便描述,分别用A表示矩阵,a表示等号左边的向量(1, 1),b表示等号右边的向量(-1, 3)。

上面这个乘法过程可以理解为:把矩阵A看成一个新的基坐标系,(1, 1) 和 (-2, 2) 分别是新基坐标系中的x, y轴。b(1, 1)可以看成是这个新基坐标系视角下坐标表示的一个向量,左边乘上一个矩阵A,相当于求出在以矩阵A为新的基坐标系的视角下,向量(1, 1)在标准的笛卡尔坐标系中的坐标表示。

可视化上面这个计算:

import numpy as np
import matplotlib.pyplot as plt# 定义矩阵和向量
A = np.array([[1, -2], [1, 2]])
b = np.array([1, 1])# 计算变换后的向量
b_transformed = A @ b# 定义标准基
origin = np.array([[0, 0], [0, 0]])# 绘制
fig, ax = plt.subplots()# 绘制原始向量
ax.quiver(*origin, b[0], b[1], angles='xy', scale_units='xy', scale=1, color='blue', label='Original Vector (1,1)')# 绘制新基
ax.quiver(*origin, A[0, 0], A[1, 0], angles='xy', scale_units='xy', scale=1, color='red', label='New x-axis (1,1)')
ax.quiver(*origin, A[0, 1], A[1, 1], angles='xy', scale_units='xy', scale=1, color='green', label='New y-axis (-2,2)')# 绘制变换后的向量
ax.quiver(*origin, b_transformed[0], b_transformed[1], angles='xy', scale_units='xy', scale=1, color='purple', label='Transformed Vector (-1,3)')# 设置图形属性
ax.set_xlim(-3, 3)
ax.set_ylim(0, 3)  # 只显示x轴的上半部分
ax.set_aspect('equal')
plt.grid()# 调整图例位置
plt.legend(loc='upper left', bbox_to_anchor=(0.6, 1), fontsize='small')
plt.title('Vector Transformation and Basis Visualization')
plt.xlabel('X')
plt.ylabel('Y')plt.show()

在这里插入图片描述

红色和绿色的向量构成了一个新的坐标基底,从这个基底的视角来看,棕色的向量还是(1, 1),但是这个新基坐标系下的向量(1, 1)在原笛卡尔坐标系下的表示是(-1, 3)。

所以基变换角度来看矩阵乘向量 A ⋅ b A \cdot b Ab,可以理解成以矩阵A为新的基底,该基底下的向量b,在笛卡尔坐标系下的真实位置。

由此理解矩阵乘法的计算规则,为什么就是像下面这样,前面一个矩阵的第 i 行 x 后一个矩阵的第 j 列,结果为新的矩阵的第 ij 个元素:
[ 1 − 2 1 2 ] [ 1 1 ] = [ − 1 × 1 + ( − 2 ) × 1 1 × 1 + 2 × 1 ] = [ − 1 3 ] \begin{bmatrix} 1&-2 \\ 1&2 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} -1\times1+(-2)\times1\\ 1\times1+2\times1 \end{bmatrix}= \begin{bmatrix} -1\\ 3 \end{bmatrix} [1122][11]=[1×1+(2)×11×1+2×1]=[13]
因为左边矩阵不同的列向量代表新基坐标系中不同维度下的基底,后面矩阵列向量中的不同坐标分别表示新的基坐标系中不同维度的坐标,而新的基坐标系中,不同维度的基坐标轴的坐标表示,又可以看成是相对于原笛卡尔坐标系的投影,比如新的x轴(1, 1),表示这个轴在笛卡尔坐标系中的x, y轴上的投影分别都是1,新的x轴中的一个单位长度,等价于原笛卡尔坐标系中x, y轴各自一个单位长度。

因此矩阵乘法之所以规定行乘列的值作为计算的结果,本质上是把新基坐标系下,一个向量所有维度的坐标,在原笛卡尔坐标系下按照不同维度(前面矩阵的行)进行了一个汇总求和。

所以也能理解为什么规定矩阵乘法,要求必须前面一个矩阵的列数等于后一个矩阵的行数,因为前面矩阵的列数其实就是新的基坐标系的维度,后面矩阵的行数,其实就是一个向量在这个新基坐标系中各维度下的坐标表示,二者维度不同,也就没有汇总的必要和意义。

推广到高维的不规则的矩阵,比如一个3x2的矩阵乘上一个2x1的向量,新的基坐标系还是只有两个维度,只不过每个维度会投影到一个三维的笛卡尔坐标系(因为矩阵的列向量是用3个数表示,说明在笛卡尔坐标系中有3个维度的投影)。后面这个2x1的向量可以看成是新的基坐标系下的向量表示,最终的计算还是将这个向量分别在笛卡尔坐标系的三个维度上汇总求和。

以下面这个为例:

[ 0 1 1 0 1 1 ] ⋅ [ 1 1 ] = [ 1 1 2 ] \begin{bmatrix} 0 & 1\\ 1 & 0\\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 1 \end{bmatrix}= \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} 011101 [11]= 112

在这里插入图片描述
至于推广到更多行或列的矩阵乘法,无非增加行数是增加了新的基坐标在标准笛卡尔坐标系下的分解维度,增加列数是增加了新坐标系的基底数量,原理都还是一样的。

至于矩阵乘矩阵,可以把后一个矩阵看成是多个列向量的集合,用矩阵乘向量的视角去理解。

相关文章:

【线性代数】理解矩阵乘法的意义(点乘)

刚接触线性代数时,很不理解矩阵乘法的计算规则,为什么规则定义的看起来那么有规律却又莫名其妙,现在参考了一些资料,回过头重新总结下个人对矩阵乘法的理解(严格来说是点乘)。 理解矩阵和矩阵的乘法&#x…...

游戏开发技能系统常用概念

一个角色同一时间可能存在多个Skill,一个当前播放的主动技能,还有好几个不在播放中,但是也没有结束的。 技能事件: 实现具体的技能功能,技能动作的执行都是通过触发事件来触发的,比如(时间帧&am…...

【案例80】麒麟操作系统无法使用Uclient访问NC65

问题现象 麒麟操作系统,安装Uclient,添加应用后无法看到登录界面,一直在转圈。 问题分析 进入到Uclient的工作目录 发现在工作目录下,无相关app.log生成。 查看Uclient的main.log发现,有大量的报错与Uclient下的sha…...

【AIGC-ChatGPT进阶副业提示词】育儿锦囊:化解日常育儿难题的实用指南

引言 在育儿的道路上,每位父母都会遇到各种各样的挑战和困惑。从孩子的饮食习惯到沟通交流,从作息规律到行为管理,这些看似平常的问题往往会让父母感到焦虑和无助。本文将通过实际案例分析和解决方案,为父母们提供一个实用的育儿…...

使用Docker部署一个Node.js项目

本文档将介绍如何使用Docker来部署一个Node.js项目。Docker是一种开源平台,可以自动化应用程序的部署、扩展和管理。通过Docker,我们可以将应用程序及其依赖项打包到一个容器中,从而确保在不同环境中运行的一致性。接下来,我们将逐…...

数据科学与SQL:如何利用本福特法则识别财务数据造假?

目录 0 本福特法则介绍 1 数据准备 2 问题分析 步骤1:提取首位数: 步骤2:计算首位数字的实际频率分布 <...

文心一言对接FreeSWITCH实现大模型呼叫中心

文心一言对接FreeSWITCH实现大模型呼叫中心 作者&#xff1a;开源大模型智能呼叫中心FreeIPCC&#xff0c;Github&#xff1a;https://github.com/lihaiya/freeipcc 随着人工智能技术的快速发展&#xff0c;特别是大规模语言模型&#xff08;LLM&#xff09;的应用&#xff0…...

LSTM实现天气模型训练与预测

要实现一个天气预测的模型&#xff0c;并确保该模型可以反复进行训练和更新&#xff0c;先设计&#xff1a; 设计方案 数据获取&#xff1a; 使用公开的天气数据API&#xff08;例如OpenWeather API或其他类似的API&#xff09;获取天气数据。确保数据以合适的格式&#xff08…...

TCL发布万象分区,再造Mini LED技术天花板

作者 |辰纹 来源 | 洞见新研社 现实世界中&#xff0c;光通过悬浮在大气中的冰晶折射&#xff0c;呈现出环形、弧形、柱形或亮点的扩散&#xff0c;从而产生光晕&#xff0c;雨后的彩虹是我们经常能看到的光晕现象。 然而&#xff0c;当光晕出现在电视中&#xff0c;那就不是…...

2024广东省职业技能大赛云计算——私有云(OpenStack)平台搭建

OpenStack搭建 前言 搭建采用双节点安装&#xff0c;即controller控制节点和compute计算节点。 CentOS7 系统选择 2009 版本&#xff1a;CentOS-7-x86_64-DVD-2009.iso 可从阿里镜像站下载&#xff1a;https://mirrors.aliyun.com/centos/7/isos/x86_64/ OpenStack使用竞赛培…...

简单了解图注意力机制

简单了解图注意力机制 如果对传统的图匹配的聚合方式进行创新的话&#xff0c;也就是对h这一个节点的聚合方式进行创新。 h i ( l 1 ) Norm ⁡ ( σ ( h i ( l ) α ∥ h i ( l ) ∥ m i ( l ) ∥ m i ( l ) ∥ ) ) , \mathbf{h}_{i}^{(l1)}\operatorname{Norm}\left(\sigm…...

UI Automator Viewer操作

版本&#xff1a;24.4.1 使用UI Automator Viewer报错如下&#xff1a; Error obtaining Ul hierarchy Reason: Error while obtaining Ul hierarchy XML file: com.android.ddmlib.SyncException: Remote object doesnt exist!可以使用指令&#xff1a; 保存uix文件 adb sh…...

SpringBoot的创建方式

SpringBoot创建的五种方式 1.通过Springboot官网链接下载 注意SpringBoot项目的封装方式默认为Jar 需要查看一下&#xff0c;自己的Maven版本是否正确 创建成功 2.通过 aliyun官网链接下载 修改服务路径为阿里云链接 创建成功 3.通过Springboot官网下载 点击&#xff0c;拉到最…...

Vue3之性能优化

Vue3作为Vue框架的最新版本&#xff0c;在性能上进行了大量的优化&#xff0c;使得其在处理大型应用和复杂界面时表现更加出色。本文将详细介绍Vue3的性能提升、优化策略以及性能提升的实例&#xff0c;并结合具体代码和性能测试数据&#xff0c;展示Vue3在实际应用中的性能优势…...

RFdiffusion Sampler类 sample_step 方法解读

Sampler类的sample_step 方法的主要目的是根据扩散模型的预测生成在时间步 t-1 上的下一个三维结构、序列和其他相关特征。这是扩散采样过程的核心步骤之一。 源代码: def sample_step(self, *, t, x_t, seq_init, final_step):Generate the next pose that the model should…...

Flutter组件————FloatingActionButton

FloatingActionButton 是Flutter中的一个组件&#xff0c;通常用于显示一个圆形的按钮&#xff0c;它悬浮在内容之上&#xff0c;旨在吸引用户的注意力&#xff0c;并代表屏幕上的主要动作。这种按钮是Material Design的一部分&#xff0c;通常放置在页面的右下角&#xff0c;但…...

算法学习(十六)—— 综合练习

目录 1863. 找出所有子集的异或总和再求和 47. 全排列 Ⅱ 17. 电话号码的字母组合 22. 括号生成 77. 组合 494. 目标和 39. 组合总和 784. 字母大小写全排列 526. 优美的排列 51. N皇后 36. 有效的数独 37. 解数独 79. 单词搜索 1219. 黄金矿工 980. 不同路径 Ⅲ…...

kratos源码分析:熔断器

文章目录 为什么需要熔断Google sre弹性熔断算法kratos Breaker源码分析公共接口sre实现上报请求结果判定是否熔断 为什么需要熔断 一般来说&#xff0c;当服务器过载&#xff08;overload&#xff09;时&#xff0c;需要给client返回服务过载的报错 但是拒接请求也有成本&…...

CTF_1

CTF_Show 萌新赛 1.签到题 <?php if(isset($_GET[url])){system("curl https://".$_GET[url].".ctf.show"); }else{show_source(__FILE__); }?> 和 AI 一起分析 1.if(isset($_GET[url]))检查GET请求中是否存在名为url的参数。 curl 2.curl…...

【系统】Mac crontab 无法退出编辑模式问题

【系统】Mac crontab 无法退出编辑模式问题 背景一、问题回答1.定位原因&#xff1a;2.确认编辑器类型3.确保编辑器进入正确3.1 确认是否有crontab调度任务3.2 进入编辑器并确保编辑器正常3.3 保存操作 4.确认crontab任务存在5.确保脚本的可执行性和正确性 二、后续 背景 之前…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...