【pytorch】深度学习计算
1 层和块
块由类(class)表示。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数,并且必须存储任何必需的参数。注意,有些块不需要任何参数。最后,为了计算梯度,块必须具有反向传播函数。
1.1 自定义块
每个块必须提供的基本功能:
- 将输入数据作为其前向传播函数的参数。
- 通过前向传播函数来生成输出。
- 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
- 存储和访问前向传播计算所需的参数。
- 根据需要初始化模型参数。
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256) # 隐藏层self.out = nn.Linear(256, 10) # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
2 参数管理
参数是复合的对象,包含值、梯度和额外信息。
访问第一个全连接层的参数和访问所有层
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
另一种访问网络参数的方式
net.state_dict()['2.bias'].data
2.1 参数初始化
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init模块提供了多种预置初始化方法。
2.1.1 内置初始化
下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
还可以将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
还可以[对某些块应用不同的初始化方法]。 例如,下面使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
2.1.2 自定义初始化
使用以下的分布为任意权重参数𝑤定义初始化方法:

def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5net.apply(my_init)
net[0].weight[:2]
2.2 参数绑定
在多个层间共享参数: 可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。
当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
3 自定义层
3.1 不带参数的层
首先,我们(构造一个没有任何参数的自定义层)。只需继承基础层类并实现前向传播功能。
import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()def forward(self, X):return X - X.mean()
3.2 带参数的层
参数可以通过训练进行调整。 我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。
实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。
class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)
相关文章:
【pytorch】深度学习计算
1 层和块 块由类(class)表示。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数,并且必须存储任何必需的参数。注意,有些块不需要任何参数。最后,为了计算梯度,块必须具有反向传播函数。 1.1…...
详解磁盘IO、网络IO、零拷贝IO、BIO、NIO、AIO、IO多路复用(select、poll、epoll)
1、什么是I/O 在计算机操作系统中,所谓的I/O就是输入(Input)和输出(Output),也可以理解为读(Read)和写(Write),针对不同的对象,I/O模式可以划分为…...
VPN技术-GRE隧道的配置
GRE隧道的配置 1, 在AR1上配置DHCP接口地址池,AR3上配置DHCP全局地址池 2, PC1获取的IP地址为10.10.10.253,PC2获取的IP地址为10.10.30.253 3,通过ip route-static将目的地址为10.10.30.253的流量引入到Tunnel #配…...
【spring-cloud-gateway总结】
文章目录 什么是gateway如何导入gateway依赖路由配置gateway配置断路器导包配置 什么是gateway 在微服务架构中,gateway网关是一个服务,它作为系统的唯一入口点,处理所有的客户端请求,然后将这些请求路由到适当的服务。提供了几个…...
数组相关简单算法
目录 1. 数据结构与算法 2. 数组中涉及的算法 2.1 2.2 数值型数组相关运算 2.3 数组赋值 2.4 数组复制/反转 2.5 数组查找 2.6 排序 1. 数据结构与算法 《数据结构与算法》是大学些许专业的必修或选修课,主要包含两方面知识: (1&#…...
在VBA中结合正则表达式和查找功能给文档添加交叉连接
在VBA中搜索文本有两种方式可用,一种是利用Range.Find对象(更常见的形式可能是Selection.Find,Selection是Range的子类,Selection.Find其实就是特殊的Range.Find),另一种方法是利用正则表达式,但…...
动手学深度学习-多层感知机-7前向传播、反向传播和计算图
目录 前向传播 前向传播计算图 反向传播 训练神经网络 小结 我们已经学习了如何用小批量随机梯度下降训练模型。 然而当实现该算法时,我们只考虑了通过前向传播(forward propagation)所涉及的计算。 在计算梯度时,我们只调用…...
【Python】基于Python的CI/CD工具链:实现自动化构建与发布
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在现代软件开发中,持续集成(CI)和持续交付(CD)已经成为提高开发效率和软件质量的重要实践。CI/CD流程帮助开发团队自动化构建、测试、…...
FPGA-PS端编程1:
目标 在小梅哥的zynq 7015上,完成以下目标: 读取 S1 按键的电平, 当 S1 按键为按下状态时,驱动 PS LED 以 1S 的频率闪烁(注意理解 1S 的频率闪烁和 1S的时间翻转两种描述之间的差别), 当 S1 释放后,停止…...
自制数据库迁移工具-C版-06-HappySunshineV1.5-(支持南大Gbase8a、PostgreSQL、达梦DM)
目录 一、环境信息 二、简述 三、架构图 四、升级点 五、支持功能 六、后续计划支持功能 七、安装包下载地址 八、配置参数介绍 九、安装步骤 1、用户创建 2、安装包解压 3、环境变量配置 4、环境变量生效 5、动态库链接检验 (1)HsManage…...
了解RPC
本文来自智谱清言 --------- RPC(Remote Procedure Call,远程过程调用)是一种允许程序调用位于远程计算机上的子程序或服务的技术。这种技术使得构建分布式计算变得更加容易,因为它提供了强大的远程调用能力,同时保持…...
centos7 安装docker
文章目录 介绍docker特点安装1.前提准备2.下载1.移除旧版docker命令2.切换centos7的镜像源3.配置docker yum源4.安装最新docker5.输入命令验证docker 安装是否成功6.配置docker 镜像加速7.设置为开机自启 总结 介绍 Docker是一种开源的容器化平台,旨在简化应用…...
Docker 入门:如何使用 Docker 容器化 AI 项目(一)
引言 在人工智能(AI)项目的开发和部署过程中,环境配置和依赖管理往往是开发者遇到的挑战之一。开发者通常需要在不同的机器上运行同样的代码,确保每个人使用的环境一致,才能避免 “在我的机器上可以运行”的尴尬问题。…...
LLMs之rStar:《Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers》翻译与解读
LLMs之rStar:《Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers》翻译与解读 导读:这篇论文提出了一种名为rStar的自我博弈互推理方法,用于增强小型语言模型 (SLMs) 的推理能力,无需微调或依赖更强大的模型。rStar…...
【RK3588 Linux 5.x 内核编程】-内核中断与ThreadedIRQ
内核中断与ThreadedIRQ 文章目录 内核中断与ThreadedIRQ1、Threaded IRQ介绍2、Threaded IRQ相关API3、驱动实现4、驱动验证当 Interrupt 触发时,Interrupt handler 应该执行得非常快,它不应该运行更多的时间(它不应该执行耗时的任务)。 如果我们有执行更多任务的中断处理程…...
Message Processing With Spring Integration高级应用:自定义消息通道与端点
一、Spring Integration 简介 Spring Integration 是 Spring 框架的扩展,支持企业集成模式(EIP),提供轻量级的消息处理功能,帮助开发者构建可维护、可测试的企业集成解决方案。 核心目标: 提供简单的模型…...
S32K324 MCAL中的Postbuild和PreCompile使用
文章目录 前言Postbuild和PreCompile的概念MCAL中配置差异总结 前言 之前一直看到MCAL配置中有这个Postbuild和PreCompile的配置,但是不太清楚这两个的区别和使用方法。最近在使用中出现了相关问题,本文介绍一下MCAL中这两种配置的区别和使用。 Postbu…...
kubeadm_k8s_v1.31高可用部署教程
kubeadm_k8s_v1.31高可用部署教程 实验环境部署拓扑图**部署署架构****Load Balance****Control plane node****Worker node****资源分配(8台虚拟机)**集群列表 前置准备关闭swap开启ipv4转发更多设置 1、Verify the MAC address and product_uuid are u…...
【AI日记】24.12.22 容忍与自由 | 环境因素和个人因素
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 内容:看 OpenAi 这周的发布会和其他 AI 新闻,大佬视频时间:3 小时 读书 书名:富兰克林自传时间:1 小时评估:读完,总体…...
【Java基础面试题030】Java和Go的区别?
回答重点 可以从语言的设计理念、并发模型、内存管理、生态系统与应用场景来说: 1)语言设计理念: Java:Java是一种面向对象编程语言,强调继承、多态和封装等OOP特性。它运行在Java虚拟机(JVM)…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...
