当前位置: 首页 > news >正文

【动手学运动规划】 5.2 数值优化基础:梯度下降法,牛顿法

朕四季常服, 不过八套. — 大明王朝1566 道长

🏰代码及环境配置:请参考 环境配置和代码运行!


上一节我们介绍了数值优化的基本概念, 让大家对最优化问题有了基本的理解.

那么对于一个具体的问题, 我们应该如何求解呢? 这一节我们将介绍几个基本的求解方法, 为了简化问题, 我们会基于无约束凸优化问题来做解释. 因为无约束凸优化问题, 梯度为0的点(极值点), 就是全局最优解.

最优化问题的求解是一个迭代的过程, 从初始点(初始解) x 0 x_0 x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新 x i x_i xi, 直至逼近最优解 x ∗ x^* x.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢? 或者更高维度的问题里, 如何确定每个维度的方向和步长呢?

接下来我们介绍几个基础的最优化求解方法

5.2.1 梯度下降法(Gradient Descent)

梯度是指函数在某一点上沿着各个方向的偏导数, 梯度代表着当前点函数值增加最快的方向. 定义如下:

∇ f ( x 1 , x 2 , . . . x n ) = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 , . . . ∂ f ∂ x n ) \nabla f(x_1,x_2,...x_n)=\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2},... \frac{\partial f}{\partial x_n} \right) f(x1,x2,...xn)=(x1f,x2f,...xnf)

梯度下降法是最常采用的方法之一, 它会沿着梯度下降(相反)的方向逐步调整决策变量. 它的更新公式如下:

x k + 1 = x k − α k ∇ f ( x k ) .  x^{k+1}=x^k-\alpha_k \nabla f\left(x^k\right) \text {. } xk+1=xkαkf(xk)

其中 x k x^k xk是第k次迭代x的值, α k \alpha_k αk是第k次迭代的步长.

这张动图可以清晰的展示梯度下降法更新的过程, 每次迭代, 都沿着梯度方向, 更新迭代点.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(1) 梯度下降法的优点

  • 实现简单:梯度下降法只需要计算函数的梯度(一阶导数),实现简单,计算量相对较小。
  • 广泛适用:对于大多数连续可导的凸函数,梯度下降法都能找到局部最小值。当目标函数是凸函数时,梯度下降法的解是全局解。
  • 参数更新方向合理:梯度下降法基于梯度信息选择参数更新方向,这是函数在当前位置的最快下降方向。

(2) 梯度下降法的缺点

  • 收敛速度慢:梯度下降法是一阶收敛算法,在接近最小值点时,梯度值会变得很小,导致收敛速度变慢。此外,直线搜索时可能会产生“之字形”下降路径,进一步降低收敛速度。
  • 对初始值敏感:不同的初始值可能导致算法收敛到不同的局部最小值。
  • 需要手动调整学习率:学习率的选择对算法的收敛速度和效果有很大影响。学习率过大可能导致算法发散,学习率过小则收敛速度过慢。
  • 可能陷入局部极值点:如果目标函数不是凸函数而是含有多个极小值点的函数,梯度下降法可能会陷入局部极小点而无法继续下降。

5.2.2 牛顿法(Newton Method)

梯度下降法是一种一阶导数迭代的方法, 收敛速度较慢. 如果利用二阶导数, 是不是能够更快的逼近极值点呢?

牛顿法就是二阶导数迭代的代表, 它综合了一阶和二阶信息, 能够快速收敛. 更新公式如下:

x k + 1 = x k − ∇ 2 f ( x k ) − 1 ∇ f ( x k ) x^{k+1}=x^k-\nabla^2 f\left(x^k\right)^{-1} \nabla f\left(x^k\right) xk+1=xk2f(xk)1f(xk)

其中 ∇ 2 \nabla^2 2是指函数的Hessian矩阵, 是一个由函数的二阶偏导数构成的矩阵,定义如下:

∇ 2 f ( x 1 , x 2 , . . . x n ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] \nabla^2 f(x_1,x_2,...x_n)=\left[\begin{array}{cccc}\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\\vdots & \vdots & \ddots & \vdots \\\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}\end{array}\right] 2f(x1,x2,...xn)= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f

∇ 2 f ( x k ) − 1 \nabla^2 f\left(x^k\right)^{-1} 2f(xk)1是Hessian矩阵的逆矩阵, 可以看出牛顿法的计算量很大.

这张图展示了梯度下降法(绿)和牛顿法(红)的对比, 可以看到牛顿法要高效的多.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(1) 牛顿法的优点

  • 收敛速度快:牛顿法利用了函数的二阶导数信息(Hessian矩阵),能够在接近最小值点时快速收敛。特别是对于正定二次函数,牛顿法的一步迭代即可达到最优解。
  • 对初始值不敏感:相对于梯度下降法,牛顿法对初始值的依赖性较小,更有可能找到全局最优解。
  • 全局视野:牛顿法在选择下降方向时,不仅考虑当前位置的梯度,还考虑未来位置梯度的变化趋势,因此具有更强的全局视野。

(2) 牛顿法的缺点

  • 计算量大:牛顿法需要计算函数的二阶导数(Hessian矩阵)及其逆矩阵,计算量相对较大
  • 对Hessian矩阵要求高:Hessian矩阵必须正定,否则算法可能无法收敛。此外,当Hessian矩阵接近奇异时,算法可能会变得不稳定。
  • 函数要求苛刻:牛顿法要求目标函数二阶连续可微,且Hessian矩阵可逆.

因为牛顿法的计算量较大, 为了克服这个问题, 拟牛顿法应运而生. 拟牛顿法不直接去计算Hessian矩阵, 而是通过 近似Hessian矩阵的逆矩阵 来达到类似牛顿法的效果. 常见的拟牛顿法有BFGS等.

下一节我们将使用梯度下降法和牛顿法, 解决Rosenbrock Function, 让大家更直观的看到两种方法的区别.

参考链接

  • 刘浩洋. 最优化: 建模, 算法与理论. 高等教育出版社, 2020.

🏎️自动驾驶小白说官网:https://www.helloxiaobai.cn

相关文章:

【动手学运动规划】 5.2 数值优化基础:梯度下降法,牛顿法

朕四季常服, 不过八套. — 大明王朝1566 道长 🏰代码及环境配置:请参考 环境配置和代码运行! 上一节我们介绍了数值优化的基本概念, 让大家对最优化问题有了基本的理解. 那么对于一个具体的问题, 我们应该如何求解呢? 这一节我们将介绍几个基本的求解…...

电子应用设计方案66:智能打印机系统设计

智能打印机系统设计 一、引言 随着科技的不断发展,打印机也在向智能化方向演进。智能打印机不仅能够提供高质量的打印服务,还具备便捷的操作、智能的管理和连接功能。 二、系统概述 1. 系统目标 - 实现高效、高质量的打印输出。 - 支持多种连接方式&am…...

iClient3D for Cesium 实现限高分析

作者:gaogy 1、背景 随着地理信息技术的发展,三维地球技术逐渐成为了许多领域中的核心工具,尤其是在城市规划、环境监测、航空航天以及军事领域。三维地图和场景的应用正在帮助人们更加直观地理解空间数据,提供更高效的决策支持。…...

AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python

支持向量机是AI开发中最常见的一种算法。之前我们已经一起初步了解了它的概念和应用,今天我们用它来进行一次文本情感分析训练。 一、概念温习 支持向量机(SVM)是一种监督学习算法,广泛用于分类和回归问题。 它的核心思想是通过…...

torch.unsqueeze:灵活调整张量维度的利器

在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是…...

【WRF教程第3.1期】预处理系统 WPS 详解:以4.5版本为例

预处理系统 WPS 详解:以4.5版本为例 每个 WPS 程序的功能程序1:geogrid程序2:ungrib程序3:metgrid WPS运行(Running the WPS)步骤1:Define model domains with geogrid步骤2:Extract…...

SD ComfyUI工作流 根据图像生成线稿草图

文章目录 线稿草图生成SD模型Node节点工作流程工作流下载效果展示线稿草图生成 该工作流的设计目标是将输入的图像转换为高质量的线稿风格输出。其主要流程基于 Stable Diffusion 技术,结合文本和图像条件,精确生成符合预期的线条艺术图像。工作流的核心是通过模型的条件设置…...

挑战一个月基本掌握C++(第六天)了解函数,数字,数组,字符串

一 C函数 函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。 您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上&#xff…...

git中的多人协作

目录 1.1多人协作1.1.1创建仓库1.1.2协作处理1.1.3冲突处理 1.2分支推送协作1.3分支拉取协作1.4远程分支的删除 1.1多人协作 1.1.1创建仓库 新建两个文件夹,不需要初始化为git仓库,直接克隆远程仓库命名testGit1,testGit2 指定本地仓库级别…...

解决新安装CentOS 7系统mirrorlist.centos.org can‘t resolve问题

原因 mirrorlist.centos.org yum源用不了 解决办法就是 # cd /etc/yum.repos.d/ # mv CentOS-Base.repo CentOS-Base.repo_bak # vim CentOS-Base.repoCentOS系统操作 # mv /etc/yum.repos.d/*.repo /etc/yum.repos.d/*.repo_bak # curl -o /etc/yum.repos.d/CentOS-Linux-Ba…...

RK3588 , mpp硬编码yuv, 保存MP4视频文件.

RK3588 , mpp硬编码yuv, 保存MP4视频文件. ⚡️ 传送 ➡️ Ubuntu x64 架构, 交叉编译aarch64 FFmpeg mppRK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGBRk3588 FFmpeg 拉流 RTSP, 硬解码转RGBRK3588 , mpp硬编码yuv, 保存MP4视频文件....

Elasticsearch:什么是查询语言?

查询语言定义 查询语言包括数据库查询语言 (database query language - DQL),是一种用于查询和从数据库检索信息的专用计算机语言。它充当用户和数据库之间的接口,使用户能够管理来自数据库管理系统 (database management system - DBMS) 的数据。 最广…...

均值聚类算法

K-均值聚类算法是一种常用的无监督学习算法,用于将数据集划分为 K 个簇。它基于以下的思想:通过计算数据点与各个簇中心之间的距离来确定数据点所属的簇,并更新簇中心来最小化簇内数据点的平方误差。K-均值算法的步骤如下: 1. 选…...

MySQL 中快速插入大量数据

在 MySQL 中快速插入大量数据(例如 20 万条记录)可以通过多种方法实现。以下是一些优化技巧和步骤,可以帮助你高效地插入大量数据: 1. 禁用索引和约束(如果可能) 在插入大量数据之前,禁用索引和…...

腾讯云智能结构化OCR:以多模态大模型技术为核心,推动跨行业高效精准的文档处理与数据提取新时代

🎼个人主页:【Y小夜】 😎作者简介:一位双非学校的大三学生,编程爱好者, 专注于基础和实战分享,欢迎私信咨询! 🎆入门专栏:🎇【MySQL&#xff0…...

最大似然检测在通信解调中的应用

最大似然检测(Maximum Likelihood Detection,MLD),也称为最大似然序列估计(Maximum Likelihood Sequence Estimation,MLSE),是一种在通信系统中广泛应用的解调方法。其核心思想是在给…...

SKETCHPAD——允许语言模型生成中间草图,在几何、函数、图算法和游戏策略等所有数学任务中持续提高基础模型的性能

概述 论文地址:https://arxiv.org/pdf/2406.09403 素描是一种应用广泛的有效工具,包括产生创意和解决问题。由于素描能直接传达无法用语言表达的视觉和空间信息,因此从古代岩画到现代建筑图纸,素描在世界各地被用于各种用途。儿童…...

[JAVA备忘录] Lambda 表达式简单介绍

目录 前言 函数式接口 Lambda 表达式使用实例 简单示例 1. 无参数,无返回值 2. 有参数,无返回值 3. 无参数,有返回值 4. 有参数,有返回值 解释: 集合框架 1.forEach:遍历集合 2.排序&#xff1…...

[python]使用flask-caching缓存数据

简介 Flask-Caching 是 Flask 的一个扩展,为任何 Flask 应用程序添加了对各种后端的缓存支持。它基于 cachelib 运行,并通过统一的 API 支持 werkzeug 的所有原始缓存后端。开发者还可以通过继承 flask_caching.backends.base.BaseCache 类来开发自己的…...

裸机按键输入实验

一、硬件原理分析 按键就两个状态:按下或弹起,将按键连接到一个 IO 上,通过读取这个 IO 的值就知道按 键是按下的还是弹起的。至于按键按下的时候是高电平还是低电平要根据实际电路来判断。前 面几章我们都是讲解 I.MX6U 的 GPIO 作为输出使用…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

GitHub 趋势日报 (2025年06月06日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法:数据与控制信息的结构或格式,如同语言中的语法规则语义:控制信息的具体含义和响应方式,规定通信双方"说什么"同步:事件执行的顺序与时序…...