最大似然检测在通信解调中的应用
最大似然检测(Maximum Likelihood Detection,MLD),也称为最大似然序列估计(Maximum Likelihood Sequence Estimation,MLSE),是一种在通信系统中广泛应用的解调方法。其核心思想是在给定观测数据的情况下,选择使观测数据出现概率最大的参数值作为估计结果。这种方法特别适用于需要考虑信道时间弥散影响的场景。
一、最大似然检测的基本原理
最大似然检测基于概率模型,假设观测到的数据是随机变量X的实例,其概率密度函数为f(x|θ),其中θ是未知参数。我们的目标是通过观测到的数据来估计这些未知参数θ。最大似然估计的目标是找到使似然函数L(θ)达到最大值的θ,即:
θ=argmaxθL(θ)
其中,似然函数L(θ)是由观测到的数据集合x的概率密度函数f(x|θ)构成的。假设观测到的数据是随机变量X的实例,其概率密度函数为f(x|θ),则似然函数L(θ)可以表示为:
L(θ)=∏i=1Nf(xi|θ)L(θ)=∏i=1Nf(xi|θ)
其中,xi是观测到的数据点,N是数据点的数量。
为了便于计算,通常对似然函数L(θ)取对数,得到对数似然函数l(θ):
l(θ)=logL(θ)=∑i=1Nlogf(xi|θ)l(θ)=logL(θ)=∑i=1Nlogf(xi|θ)
然后,通过对对数似然函数求导数,找到使其达到最大值的参数θ。
二、最大似然检测在通信解调中的应用
在通信解调中,最大似然检测被广泛应用于信号的估计、滤波、解调等方面。假设信道传输的信号为s(t),噪声为n(t),接收端信号为r(t),信道传输函数为h(t),则:
r(t)=s(t)∗h(t)+n(t)r(t)=s(t)∗h(t)+n(t)
我们希望通过观测到的r(t)来估计信道传输函数h(t)或其他相关参数。
代码示例:最大似然检测在BPSK解调中的应用
以下是一个使用Python实现最大似然检测在BPSK解调中的示例代码。
python代码
import numpy as np | |
import scipy.optimize as opt | |
import scipy.signal as signal | |
# 生成信号和噪声 | |
f0 = 5 # 信号频率 | |
T = 1 / f0 # 信号周期 | |
t = np.linspace(0, 10, 1000) # 时间向量 | |
a = 2 + 1j # 信号幅度和相位 | |
h = np.sum([a * np.exp(1j * 2 * np.pi * f0 * k * t) for k in range(-5, 6)]) # 信道传输函数 | |
n = np.random.normal(0, 0.1, 1000) # 噪声 | |
r = h * h + n # 接收信号 | |
# 信号的FFT | |
R = np.fft.fft(r) | |
H = np.fft.fft(h) | |
N = len(R) // 2 | |
# 定义对数似然函数 | |
def loglikelihood(a): | |
ak = a[::int(T)] # 提取信号系数 | |
Y = np.zeros(N, dtype=complex) | |
for k in range(int(T)): | |
Y += ak[k] * H[k] | |
Y = np.fft.ifft(Y[:N]) | |
return np.sum(np.log(1 + np.abs(Y)**2)) | |
# 最大似然估计 | |
result = opt.minimize(loglikelihood, x0=np.zeros(100), method='BFGS') | |
ahat = result.x | |
# 解调 | |
hhat = np.sum([ahat[k] * np.exp(1j * 2 * np.pi * f0 * k * t) for k in range(-5, 6)]) | |
s = np.dot(hhat.conjugate(), r) # 通过内积恢复原始信号 | |
# 绘制结果 | |
import matplotlib.pyplot as plt | |
plt.figure(figsize=(12, 6)) | |
plt.subplot(2, 1, 1) | |
plt.plot(t, np.real(h), label='Original Signal') | |
plt.plot(t, np.real(hhat), label='Estimated Signal') | |
plt.legend() | |
plt.title('Channel Response Estimation') | |
plt.subplot(2, 1, 2) | |
plt.plot(t, np.real(s), label='Recovered Signal') | |
plt.legend() | |
plt.title('Recovered Signal from Received Data') | |
plt.tight_layout() | |
plt.show() |
代码解释:
(1)生成信号和噪声:首先生成一个BPSK调制信号,并添加高斯噪声。
(2)信号的FFT:对接收到的信号和信道传输函数进行快速傅里叶变换(FFT)。
(3)定义对数似然函数:根据最大似然估计的原理,定义对数似然函数。
(4)最大似然估计:使用SciPy的优化函数minimize来最大化对数似然函数,从而估计信号参数。
(5)解调:通过估计的信道传输函数和接收到的信号,使用内积恢复原始信号。
(6)绘制结果:使用Matplotlib绘制原始信号、估计信号和恢复信号的波形。
通过上述示例,我们可以看到最大似然检测在通信解调中的实际应用和效果。这种方法在复杂的通信环境中,尤其是在需要考虑信道时间弥散影响的情况下,具有显著的优势。
相关文章:
最大似然检测在通信解调中的应用
最大似然检测(Maximum Likelihood Detection,MLD),也称为最大似然序列估计(Maximum Likelihood Sequence Estimation,MLSE),是一种在通信系统中广泛应用的解调方法。其核心思想是在给…...

SKETCHPAD——允许语言模型生成中间草图,在几何、函数、图算法和游戏策略等所有数学任务中持续提高基础模型的性能
概述 论文地址:https://arxiv.org/pdf/2406.09403 素描是一种应用广泛的有效工具,包括产生创意和解决问题。由于素描能直接传达无法用语言表达的视觉和空间信息,因此从古代岩画到现代建筑图纸,素描在世界各地被用于各种用途。儿童…...
[JAVA备忘录] Lambda 表达式简单介绍
目录 前言 函数式接口 Lambda 表达式使用实例 简单示例 1. 无参数,无返回值 2. 有参数,无返回值 3. 无参数,有返回值 4. 有参数,有返回值 解释: 集合框架 1.forEach:遍历集合 2.排序࿱…...
[python]使用flask-caching缓存数据
简介 Flask-Caching 是 Flask 的一个扩展,为任何 Flask 应用程序添加了对各种后端的缓存支持。它基于 cachelib 运行,并通过统一的 API 支持 werkzeug 的所有原始缓存后端。开发者还可以通过继承 flask_caching.backends.base.BaseCache 类来开发自己的…...

裸机按键输入实验
一、硬件原理分析 按键就两个状态:按下或弹起,将按键连接到一个 IO 上,通过读取这个 IO 的值就知道按 键是按下的还是弹起的。至于按键按下的时候是高电平还是低电平要根据实际电路来判断。前 面几章我们都是讲解 I.MX6U 的 GPIO 作为输出使用…...
GaussDB运维管理工具(二)
GaussDB运维管理工具(二) 集群管理组件cm_ctl工具介绍cm_ctl工具使用查询集群状态启停集群主备切换重建备DN检测进程运行查看实例配置文件手动剔除故障CNCM参数获取和配置停止仲裁 Cluster Manager(缩写为CM)是GaussDB的集群管理工…...

【HarmonyOS之旅】HarmonyOS开发基础知识(一)
目录 1 -> 应用基础知识 1.1 -> 用户应用程序 1.2 -> 用户应用程序包结构 1.3 -> Ability 1.4 -> 库文件 1.5 -> 资源文件 1.6 -> 配置文件 1.7 -> pack.info 1.8 -> HAR 2 -> 配置文件简介 2.1 -> 配置文件的组成 3 -> 配置文…...

Mysql数据究竟是如何存储的
Mysql行列式 开篇 笔者这几日在学习mysql是这么运行的这本书,感觉书中的内容受益匪浅,想整理成自己的话分享给大家,平时大家工作和生活中可能没有时间去专心投入读取一本书,而mysql是这么运行的这本书需要投入大量的时间的学…...

STM32单片机使用CAN协议进行通信
CAN总线(控制器局域网总线) 理论知识 CAN总线是由BOSCH公司开发的一种简洁易用、传输速度快、易扩展、可靠性高的串行通信总线 CAN总线特征 两根通信线(CAN_H、CAN_L),线路少,无需共地差分信号通信&…...

Docker 入门:如何使用 Docker 容器化 AI 项目(二)
四、将 AI 项目容器化:示例实践 - 完整的图像分类与 API 服务 让我们通过一个更完整的 AI 项目示例,展示如何将 AI 项目容器化。我们以一个基于 TensorFlow 的图像分类模型为例,演示如何将训练、推理、以及 API 服务过程容器化。 4.1 创建 …...
MVVM、MVC、MVP 的区别
MVVM(Model-View-ViewModel)、MVC(Model-View-Controller)和MVP(Model-View-Presenter)是三种常见的软件架构模式,它们在客户端应用开发中被广泛使用。每种模式都有其特定的设计理念和应用场景&…...

【Verilog】期末复习
数字逻辑电路分为哪两类?它们各自的特点是什么? 组合逻辑电路:任意时刻的输出仅仅取决于该时刻的输入,而与电路原来的状态无关 没有记忆功能,只有从输入到输出的通路,没有从输出到输入的回路 时序逻辑电路&…...

C#都可以找哪些工作?
在国内学习C#,可以找的工作主要是以下4个: 1、游戏开发 需要学习C#编程、Unity引擎操作、游戏设计和3D图形处理等。 2、PC桌面应用开发 需要学习C#编程、WinForm框架/WPF框架、MVVM设计模式和UI/UX设计等。 3、Web开发 需要学习C#编程、ASP.NET框架…...

机器学习Python使用scikit-learn工具包详细介绍
一、简介 Scikit-learn是一个开源的机器学习库,用于Python编程语言。它建立在NumPy、SciPy和matplotlib这些科学计算库之上,提供了简单有效的数据挖掘和数据分析工具。Scikit-learn库包含了许多用于分类、回归、聚类和降维的算法,包括支持向量…...
蓝桥杯真题 - 扫雷 - 题解
题目链接:https://www.lanqiao.cn/problems/549/learning/ 个人评价:难度 1 星(满星:5) 前置知识:无 整体思路 按题意模拟;为了减少不必要的“数组越界”判断,让数组下标从 1 1 1…...

vue3项目结合Echarts实现甘特图(可拖拽、选中等操作)
效果图: 图一:选中操作 图二:上下左右拖拽操作 本案例在echarts示例机场航班甘特图的基础上修改 封装ganttEcharts组件,测试数据 airport-schedule.jsonganttEcharts代码: 直接复制粘贴可测…...
Log4j2 插件的简单使用
代码: TestPlugin.java package com.chenjiacheng.webapp.plugins;import org.apache.logging.log4j.core.LogEvent; import org.apache.logging.log4j.core.config.plugins.Plugin; import org.apache.logging.log4j.core.lookup.StrLookup;/*** Created by chenjiacheng on …...

Linux之RPM和YUM命令
一、RPM命令 1、介绍 RPM(RedHat Package Manager).,RedHat软件包管理工具,类似windows里面的setup,exe是Liux这系列操作系统里而的打包安装工具。 RPMI包的名称格式: Apache-1.3.23-11.i386.rpm “apache’” 软件名称“1.3.23-11” 软件的版本号&am…...

读取硬件板子上的数据
SSCOM工具,先要安装一个插件 这样就可以读到设备数据...

Cesium 实例化潜入潜出
Cesium 实例化潜入潜出 1、WebGL Instance 的原理 狭义的的WebGL 中说使用 Instance, 一般指使用 glDrawArraysInstanced 用于实例化渲染的函数。它允许在一次绘制调用中渲染多个相同的几何体实例,而无需为每个实例发起单独的绘制调用。 Three.js 就是使用这种方…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...