一步一步写线程之十六线程的安全退出之二例程
一、说明
在一篇分析了多线程的安全退出的相关机制和方式,那么本篇就针对前一篇的相关的分析进行举例分析。因为有些方法实现的方法类似,可能就不一一重复列举了,相关的例程主要以在Linux上的运行为主。
二、实例
线程间的同步,其实理解清楚动作的原理并不麻烦,麻烦的在于如何和业务较好的契和起来。直白的说就是用得恰到好处。所以下面的分析的方法,只是告诉大家这是一类手段,如何能更好的运用,才看开发者具体的要求是什么。
1、等待方式
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unistd.h>std::atomic_bool quit = false;struct Data {int Display(int c) {std::cout << "Display value:" << c << std::endl;return c;}
};void threadWorkSleep(Data *d) {//模拟工作for (int c = 0; c < 10000; c++) {std::cout << "threadWorkSleep:call Data func:" << d->Display(c) << std::endl;}
}int main() {Data *pd = new Data;std::thread t = std::thread(threadWorkSleep, pd);t.detach();// firt:sleep thread safe quitsleep(1);return 0;
}
大家可以试着调整一下等待和模拟工作的时间,就可以发现具体的关系。实际的场景下,可能要求必须完成线程的工作才能退出。而如果等待时长不够,则线程就来不及完成相关的工作就退出了,那么,就没有实现业务的要求。等待的方式很粗暴,但也很简单。
2、轮询方式
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unistd.h>std::atomic_bool quit = false;struct Data {int Display(int c) {std::cout << "Display value:" << c << std::endl;return c;}
};void threadWorkPolling(Data *d) {for (int c = 0; c < 10000; c++) {std::cout << "threadWorkPolling:call Data func:" << d->Display(c) << std::endl;}quit = true;
}int main() {Data *pd = new Data;// sec:Pollingstd::thread tp = std::thread(threadWorkPolling, pd);while (!quit) {std::cout << "polling quit:" << quit << std::endl;}std::cout << "polling thread safe quit.quit is:" << quit << std::endl;std::cout << "master thread thread!" << std::endl;// or deatchif (tp.joinable()) {tp.join();}return 0;
}
轮询的方式其实就是不断反复的查看是否可以退出了,这样做虽然安全,但浪费时间。就和现实社会一样,本来一个人干得活还得安排一个人去没事转转。
3、消息方式
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unistd.h>std::atomic_bool quit = false;struct Data {int Display(int c) {std::cout << "Display value:" << c << std::endl;return c;}
};// third:msg or signal
static void sigHandler(int sigNo) {std::cout << "recv msg no is:" << sigNo << std::endl;if (sigNo == SIGUSR1) {quit = true;std::cout << "recv SIGUSR1" << std::endl;}
}
// third:msg or signal
void threadWorkMsg(Data *d) {for (int c = 0; c < 10000; c++) {std::cout << "threadWorkMsg:call Data func:" << d->Display(c) << std::endl;}int ret = raise(SIGUSR1);if (ret < 0) {std::cout << "SIGUSR1 msg send err!" << std::endl;}
}int main() {Data *pd = new Data;// msgsignal(SIGUSR1, sigHandler);std::thread ts = std::thread(threadWorkMsg, pd);ts.detach();while (!quit) {std::cout << "msg or signal quit:" << quit << std::endl;}std::cout << "polling thread safe quit.quit is:" << quit << std::endl;return 0;
}
这个信号的例程因为和其它程序共用的原因,把信号放到了主程序这样看起来也有点轮询的意思,其实如果把事件接收放到线程中反而更好体现这种情况。有兴趣可以试试。
4、事件方式
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unistd.h>std::atomic_bool quit = false;struct Data {int Display(int c) {std::cout << "Display value:" << c << std::endl;return c;}
};// fourth:event
std::condition_variable conv;
std::mutex mt;
bool signaled = false;
void threadWorkEvent(Data *d) {for (int c = 0; c < 100; c++) {std::cout << "threadWorkEvent:call Data func:" << d->Display(c) << std::endl;}signaled = true;std::cout << "threadWorkEvent,set notify_one!" << std::endl;conv.notify_one();
}int main() {Data *pd = new Data;// eventstd::thread te = std::thread(threadWorkEvent, pd);te.detach();std::unique_lock<std::mutex> lock(mt);while (!signaled) {std::cout << "thread start wait....!" << std::endl;conv.wait(lock);}std::cout << "thread recv notify_one and quit wait!" << std::endl;std::cout << "master thread thread!" << std::endl;return 0;
}
其实这几个例程都非常简单,但可以一眼看明白几种手段的应用。可能老鸟儿们觉得没什么,但对于新手来说,可能还是非常有用的。其实真正复杂的在于线程结束时,相关的资源包括涉及到内存和IO等的处理。一个不小心这就出现各种问题。不过有了各个线程间互相协调的手段,就知道如何下手了。
三、总结
老生常谈的技术,可能对于不少开发者已经耳朵都听出茧子来了。可还是要说,为什么?这就和上学一样,你觉得你会了,而且你也明白了整个过程,甚至把作业都作得很好,可考试呢?大多数人仍然是一个中上游的水平。要是明白这个现象产生的道理,就明白现在这里说的什么道理。
熟能生巧,但很难产生思想!大家自己意会!
相关文章:

一步一步写线程之十六线程的安全退出之二例程
一、说明 在一篇分析了多线程的安全退出的相关机制和方式,那么本篇就针对前一篇的相关的分析进行举例分析。因为有些方法实现的方法类似,可能就不一一重复列举了,相关的例程主要以在Linux上的运行为主。 二、实例 线程间的同步,…...

【Linux系列】Shell 脚本中的条件判断:`[ ]`与`[[ ]]`的比较
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

ArcGIS+MIKE21 洪水淹没分析、溃坝分析,洪水淹没动态效果
洪水淹没分析过程: 一、所需数据: 1.分析区域DEM数据 二、ArcGIS软件 1.提取分析区域DEM(水库坝下区域) 2.DEM栅格转点 3.计算转换后几何点的x和y坐标值(精度20、小数位3) 4.导出属性表,形式…...

Git 的基本概念和使用
Git是一个分布式版本控制系统,它可以帮助开发人员追踪和管理代码的修改。下面是Git的基本概念和使用方式的解释: 仓库(Repository):Git使用仓库来存储代码和版本历史记录。仓库可以位于本地计算机上,也可以…...

*【每日一题 基础题】 [蓝桥杯 2024 省 B] 好数
[蓝桥杯 2024 省 B] 好数 好数 一个整数如果按从低位到高位的顺序,奇数位(个位、百位、万位……)上的数字是奇数,偶数位(十位、千位、十万位……)上的数字是偶数,我们就称之为“好数”。 给定一…...

对中文汉字排序的方法总结
写在前面 在各个系统中,都随处可见根据某个字段进行升序(ASC)或降序(DESC)进行排序展示。但进行中文汉字排序和查找的时候,对中文汉字的排序和查找结果往往都是错误的。 为了尽量提供全面的解决方法,本文会从各个层面出发告知有需要的人对应…...

【解决报错】AttributeError: ‘NoneType‘ object has no attribute ‘group‘
学习爬虫时,遇到如下报错: 报错原因: 正则表达式的 search 或 finditer 方法没有找到任何匹配项,可能是换行符处理不当等。 解决方法如下: 在正则表达式末尾加上re.S即可,re.S是一个编译标志,…...

数据结构经典算法总复习(上卷)
第一章:数据结构导论 无重要考点,仅需了解时间复杂度。 第二章:线性表 1.获得线性表第i个元素 void GetElem_sq(SqList L, int i, ElemType &e) {if (i<1 || i>L.length) ErrorMsg("Invalid i value"); //注意错误监…...

JS获取URL中参数值的4种方法
方法1:现代浏览器都支持 URL 和 URLSearchParams 对象,可以很方便地从URL中提取参数 // 假设当前URL为 "https://example.com/?nameJohn&age30" const url new URL(window.location.href); // 或者你可以直接传入一个URL字符串 const …...

【面经】2024年软件测试面试题,精选100 道(附答案)
测试技术面试题 1、我现在有个程序,发现在 Windows 上运行得很慢,怎么判别是程序存在问题还是软硬件系统存在问题? 2、什么是兼容性测试?兼容性测试侧重哪些方面? 3、测试的策略有哪些? 4、正交表测试用…...

LabVIEW水泵性能测试系统
在现代工业应用中,水泵作为一种广泛使用的流体输送设备,其性能的可靠性对整个生产系统的稳定运行至关重要。通过LabVIEW软件配合专业硬件设备,设计了一套水泵性能测试系统,实现对各类水泵的综合性能测试与分析,提升水泵…...

React 第十九节 useLayoutEffect 用途使用技巧注意事项详解
1、概述 useLayoutEffect 是useEffect 的一个衍生版本,只是他们的执行时机不同 useLayoutEffect 用于在DOM更新执行完成之后,浏览器渲染绘制之前执行,这会阻塞浏览器的渲染; useEffect 的执行时机是在组件首次渲染和更新渲染之后…...

重温设计模式--2、设计模式七大原则
文章目录 1、开闭原则(Open - Closed Principle,OCP)定义:示例:好处: 2、里氏替换原则(Liskov Substitution Principle,LSP)定义:示例:好处&#…...

【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?
【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的? 重要性:★★★ NLP Github 项目: NLP 项目实践:fasterai/nlp-project-practice 介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用…...

基于SSM(Spring + Spring MVC + MyBatis)框架构建一个图书馆仓储管理系统
基于SSM(Spring Spring MVC MyBatis)框架构建一个图书馆仓储管理系统是一个涉及多个功能模块的项目,包括但不限于图书管理、读者管理、借阅管理、归还管理等。 1. 环境准备 确保你已经安装了以下工具和环境: Java Developmen…...

web的五个Observer API
IntersectionObserver: 一个元素从不可见到可见,从可见到不可见 ??IntersectionObserver是一种浏览器提供的 JavaScript API,用于监测元素与视窗的交叉状态。它可以告诉开发者一个元素是否进入或离开视窗,以及两者的交叉区域的…...

Java基础:抽象类与接口
1、抽象类和接口的定义: (1)抽象类主要用来抽取子类的通用特性,作为子类的模板,它不能被实例化,只能被用作为子类的超类。 (2)接口是抽象方法的集合,声明了一系列的方法…...

llama.cpp:PC端测试 MobileVLM -- 电脑端部署图生文大模型
llama.cpp:PC端测试 MobileVLM 1.环境需要2.构建项目3.PC测试 1.环境需要 以下是经实验验证可行的环境参考,也可尝试其他版本。 (1)PC:Ubuntu 22.04.4 (2)软件环境:如下表所示 工…...

Web前端基础知识(一)
前端是构建网页的一部分,负责用户在浏览器中看到和与之交互的内容。 网页是在浏览器中呈现内容的文档或页面。 通常,网页使用HTML、CSS、JavaScript(JS)组成。 HTML:定义了页面的结构和内容。包括文本、图像、链接等。 CSS:定义页面的样式…...

基于谱聚类的多模态多目标浣熊优化算法(MMOCOA-SC)求解ZDT1-ZDT4,ZDT6和工程应用--盘式制动器优化,MATLAB代码
一、MMOCOA-SC介绍 基于谱聚类的多模态多目标浣熊优化算法(Multimodal Multi-Objective Coati Optimization Algorithm Based on Spectral Clustering,MMOCOA-SC)是2024年提出的一种多模态多目标优化算法,该算法的核心在于使用谱…...

国标GB28181摄像机接入EasyGBS如何通过流媒体技术提升安防监控效率?
随着信息技术的飞速发展,视频监控技术已成为维护公共安全和提升管理效率的重要手段。国标GB28181作为安防行业的统一设备接入与流媒体传输标准,为视频监控系统的互联互通提供了坚实的基础。EasyGBS作为一款基于GB28181协议的视频云服务平台,通…...

[Unity] ShaderGraph动态修改Keyword Enum,实现不同效果一键切换
上次更新已然四个月前,零零散散的工作结束,终于有时间写点东西记录一下~ 实际使用中,经常会碰到同一个对象需要切换不同的材质,固然可以通过C#直接替换材质球。 或者在ShaderGraph中使用Comparison配合Branch实现切换ÿ…...

Unity开发哪里下载安卓Android-NDK-r21d,外加Android Studio打包实验
NDK下载方法(是r21d,不是r21e, 不是abc, 是d版本呢) google的东西,居然是完全开源的 真的不是很多公司能做到,和那种伪搜索引擎是不同的 到底什么时候google才会开始造车 不过风险很多,最好不要合资,风险更大 Andr…...

FFTW基本概念与安装使用
FFTW基本概念与安装使用 1 基本概念2 编译安装3 使用实例3.1 单线程3.2 多线程 本文主要介绍FFTW库的基本概念、编译安装和使用方法。 1 基本概念 FFTW (Fastest Fourier Transform in the West)是C语言的一个子程序库,用于计算一维或多维离散傅里叶变换(Discrete …...

【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
Hiヽ(゜▽゜ )-欢迎来到蓝染Aizen的CSDN博客~ 🔥 博客主页: 【✨蓝染 の Blog😘】 💖感谢大家点赞👍 收藏⭐ 评论✍ 文章目录 行为型模式1、模板方法模式(1)概述(2&…...

教师如何打造专属私密成绩查询系统?
期末的校园,被一种特殊的氛围所笼罩。老师们如同辛勤的工匠,精心打磨着每一个教学环节。复习阶段,他们在知识的宝库中精挑细选,把一学期的重点内容一一梳理,为学生们打造出系统的复习框架。课堂上,他们激情…...

【1224】C选填(字符串\0占大小,类大小函数调用,const定义常量,逗号表达式取尾,abs返回值
1.设有数组定义: char array[]"China"; 则数组array所占的存储空间为__________ 6 注意要加上\0的位置 数组中考虑‘\0’,sizeof()判断大小也要考虑‘\0’ 2.初始化数组char[] strArray"kuai-shou",strArray的长度为(&am…...

本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——终篇
本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——终篇 至此,本系列的所有备赛分享已经结束 首先说说备赛的过程吧,这次比赛,真的是让我学到了太多书本上学不到的东西。一开始,对统筹控制还很模糊&a…...

复合机器人:开启智能制造新时代
在当今科技飞速发展的时代,智能制造已成为制造业转型升级的关键驱动力。而复合机器人作为智能制造领域的一颗璀璨新星,正以其卓越的性能和创新的设计,为各行各业带来前所未有的变革与机遇。 复合机器人,顾名思义,是融…...

装饰者模式
代码详解:【设计模式】Java 设计模式之装饰者模式(Decorator)_java 装饰者模式-CSDN博客 // 抽象构件角色 public interface Component {void operation(); }// 具体构件角色 public class ConcreteComponent implements Component {Override…...