MySQL中Seconds_Behind_Master是怎么计算的
目录
- 1.Seconds_Behind_Master计算方式
- 2.Seconds_Behind_Master 计算方式会存在什么问题
- 3.更好的方式
- 3.1 实现方法
- 3.2 优点
在MySQL中,Seconds_Behind_Master是一个用于表示从库(Slave)落后于主库(Master)的时间(以秒为单位)的指标。
1.Seconds_Behind_Master计算方式
其计算方式如下:
-
主库时间戳:
- 当主库生成一个二进制日志事件时,会记录一个时间戳(即事件生成的时间)。
-
从库接收事件:
- 从库的I/O线程从主库读取二进制日志事件,并将其写入本地的中继日志(Relay Log)。
-
从库执行事件:
- 从库的SQL线程从中继日志中读取事件并执行。当SQL线程执行一个事件时,会检查该事件的时间戳。
-
计算延迟:
- Seconds_Behind_Master的值是通过比较当前时间和SQL线程正在执行的事件的时间戳来计算的。
- 具体公式为:
Seconds_Behind_Master = 当前时间 - SQL线程正在执行的事件的时间戳
-
查询Seconds_Behind_Master:
- 可以通过以下SQL查询查看Seconds_Behind_Master的值:
SHOW SLAVE STATUS\G
- 可以通过以下SQL查询查看Seconds_Behind_Master的值:
2.Seconds_Behind_Master 计算方式会存在什么问题
Seconds_Behind_Master的现有计算方式可能会存在以下问题:
- 不准确的延迟反映:
- Seconds_Behind_Master仅反映从库SQL线程执行当前事件的时间差,不能准确反映实际的数据延迟。例如,长时间运行的事务可能会导致Seconds_Behind_Master值较小,但数据实际延迟较大。
- 网络延迟影响:
- 网络延迟会影响从库接收主库二进制日志的速度,从而导致Seconds_Behind_Master值增大,但这并不一定反映实际的数据复制延迟。
- 系统时间不同步:
- 如果主库和从库的系统时间不同步,Seconds_Behind_Master的计算结果将不准确。
- SQL线程停止:
- 如果从库的SQL线程停止,Seconds_Behind_Master会显示为NULL,无法反映实际的延迟情况。
- I/O线程停止:
- 如果从库的I
相关文章:

MySQL中Seconds_Behind_Master是怎么计算的
目录 1.Seconds_Behind_Master计算方式2.Seconds_Behind_Master 计算方式会存在什么问题3.更好的方式3.1 实现方法3.2 优点在MySQL中,Seconds_Behind_Master是一个用于表示从库(Slave)落后于主库(Master)的时间(以秒为单位)的指标。 1.Seconds_Behind_Master计算方式 其…...

React Native 集成原生Android功能
React Native 集成原生功能完整指南 前言 在 React Native 开发中,我们经常需要使用设备的原生功能,比如蓝牙、打印机等。本文将以集成打印机功能为例,详细介绍如何在 React Native 项目中集成 Android 原生功能。 集成步骤概述 创建原生…...

Mac mini m4安装PD和Crack和关闭SIP
文章目录 说明PD下载地址Crack下载地址PD版本补丁版本说明SIP简介SIP关闭方法启用 SIP:补充说明 说明 参考文章地址 PD下载地址 PD20.0.0 PD20.0.1 PD20.1.0 PD20.1.1 PD20.1.2 PD20.1.3 Crack下载地址 Parallels Desktop Activation Tool PD版本补丁版本…...

详解C语言中的关键词:extern以及它需要注意的事项
extern 是C语言中一个非常重要的关键字,用于声明变量或函数的 外部链接性,即在当前文件中使用另一个文件中定义的变量或函数。以下是 extern 的作用和使用场景: 1. extern 的作用 跨文件访问: extern 告诉编译器,某个…...

框架程序设计-简答以及论述
目录 maven的pom作用: Pointcut("execution(*com.example.dome.*.*(……))") 缓存的作用,redis配置过程 Redis配置过程: SpringBoot缓存配置过程: AOP的五种增强注解: 论述题:包结构作用、…...

ce第六次作业
1、判断当前磁盘剩余空间是否有20G,如果小于20G,则将报警邮件发送给管理员,每天检查一次磁盘剩余空间。 [rootServer ~]# yum install -y mailx [rootServer ~]# yum -y install bind-utils [rootServer ~]# vim /etc/mail.rc set from15339…...

为何页面搜索应避免左模糊和全模糊查询???
前言 在构建高效且可扩展的Web应用程序时,数据库查询的性能是影响用户体验的关键因素之一。特别是对于涉及大量数据的页面搜索功能,选择正确的查询方式不仅可以提升应用的速度,还能显著改善用户交互体验。 B-Tree索引与最左前缀匹配特性 1…...

AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
前言 在当今科技迅猛发展的时代,人工智能(AI)技术正以前所未有的速度改变着我们的生活与工作方式。作为AI领域的重要盛会,CSIG青年科学家会议AI可信论坛汇聚了众多青年科学家与业界精英,共同探讨AI技术的最新进展、挑…...

在 Mac M2 上安装 PyTorch 并启用 MPS 加速的详细教程与性能对比
1. 安装torch 在官网上可以查看安装教程,Start Locally | PyTorch 作者安装了目前最新的torch版本2.5.1,需要提前安装python3.9及以上版本,作者python版本是python3.11最新版本 使用conda安装torch,在终端进入要安装的环境&…...

生成式人工智能在生产型企业中的应用
生成式人工智能(Generative AI)是指使用人工智能来创建新内容,如文本、图像、音乐、音频和视频等。生成式人工智能在生产型企业中的应用涵盖了内容创作与自动化、数据分析与决策支持、生产流程优化、产品设计与开发、客户服务与沟通、员工培训…...

Linux逻辑卷管理
目录 实验要求 实验操作 1、 为Linux新添加一块SCSI磁盘/dev/sdc,容量为1024MB。在该磁盘上创建三个分区sdc1、sdc2、sdc3,大小为128MB,标识为Linux native分区。 2、 在三个分区上创建物理卷;将三个物理卷加入VolGroup00卷组&…...

机器人加装电主轴【铣削、钻孔、打磨、去毛刺】更高效
机器人加装电主轴进行铣削、钻孔、打磨、去毛刺等作业,展现出显著的优势,并能实现高效加工。 1. 高精度与高效率 电主轴特点:高速电主轴德国SycoTec的产品,转速可达100000rpm,功率范围广,精度≤1μm&#…...

opencv sdk for java中提示无stiching模块接口的问题
1、问题介绍 安卓项目中有新的需求,在 jni 中增加 stiching_detail.cpp 中全景拼接的实现。 但是在编译时,出现大量报错,如下截图所示 实际上,其他opencv的接口函数 例如 core dnn等都能正常使用,直觉上初步怀疑 ope…...

今天最新早上好问候语精选大全,每天问候,相互牵挂,彼此祝福
1、朋友相伴,友谊真诚永不变!彼此扶持绿树荫,共度快乐雨后天!一同分享的表情,愿我们友情长存,一生相伴永相连! 2、人生几十年,苦累伴酸甜,风华不再茂,雄心非当…...

五种IO模型- 阻塞IO、非阻塞IO、多路复用IO、信号驱动IO以及异步IO
在操作系统中处理输入/输出(IO)操作的过程中,存在多种方式,包括阻塞IO、非阻塞IO、多路复用IO、信号驱动IO以及异步IO。这些方式在操作系统实现和应用程序编写时有着不同的适用场景和性能特征。接下来,我将逐一介绍它们…...

Vscode GStreamer插件开发环境配置
概述 本教程使用vscode和Docker搭建Gstreamer2.24的开发环境,可以用于开发调试Gstreamer程序或者自定义插件开发。 1. vscode依赖插件 C/C Extension Pack(ms-vscode.cpptools-extension-pack):该插件包包含一组用于 Visual St…...

flask基础
from flask import Flask, requestapp Flask(__name__)# app.route(/) # def hello_world(): # put applications code here # return Hello World!app.route(/) # 路由 当用户访问特定 URL 时,Flask 会调用对应的视图函数来处理请求 def index():return …...

Java日志框架:log4j、log4j2、logback
文章目录 配置文件相关1. properties测试 2. XMl使用Dom4j解析XML Log4j与Log4j2日志门面 一、Log4j1.1 Logges1.2 Appenders1.3 Layouts1.4 使用1.5 配置文件详解1.5.1 配置根目录1.5.2 配置日志信息输出目的地Appender1.5.3 输出格式设置 二、Log4j22.1 XML配置文件解析2.2 使…...

鸿蒙-expandSafeArea使用
应用未使用setWindowLayoutFullScreen()接口设置窗口全屏布局时,默认使能组件安全区布局。可以使用expandSafeArea属性扩展安全区域属性进行调整 扩展安全区域属性原理 布局阶段按照安全区范围大小进行UI元素布局。布局完成后查看设置了expandSafeArea的组件边界&…...

【es6复习笔记】Spread 扩展运算符(8)
在现代前端开发中,JavaScript 的扩展运算符(Spread Operator)是一个非常有用的特性,它允许你将数组或对象展开,以便在函数调用、数组拼接、对象复制等场景中更方便地处理数据。扩展运算符(spread࿰…...

第22天:信息收集-Web应用各语言框架安全组件联动系统数据特征人工分析识别项目
#知识点 1、信息收集-Web应用-开发框架-识别安全 2、信息收集-Web应用-安全组件-特征分析 一、ICO图标: 1、某个应用系统的标示,如若依系统有自己特点的图标;一旦该系统出问题,使用该系统的网站都会受到影响; 2、某个公…...

后端-redis
Redis RedisString类型String类型的常用命令 Hash类型Hash类型的常用命令 List类型List类型的常用命令 Set类型Set类型的常用命令 SortedSet类型SortedSet类型的常用命令 Redis序列化缓存更新策略缓存穿透缓存雪崩缓存击穿 Redis Redis是一个key-value的数据库,key…...

开发场景中Java 集合的最佳选择
在 Java 开发中,集合类是处理数据的核心工具。合理选择集合,不仅可以提高代码效率,还能让代码更简洁。本篇文章将重点探讨 List、Set 和 Map 的适用场景及优缺点,帮助你在实际开发中找到最佳解决方案。 一、List:有序存…...

golangci-lint安装与Goland集成
golangci-lint安装与Goland集成 1.golangci-lint概述2.golangci-lint安装3.Goland 中集成 golangci-lint4.golangci-lint 的使用5.排除代码检查 1.golangci-lint概述 golangci-lint是用于go语言的代码静态检查工具集 官网地址:golangci-lint 特性: 快…...

金仓数据库安装-Kingbase v9-centos
在很多年前有个项目用的金仓数据库,上线稳定后就没在这个项目了,只有公司的开发环境还在维护,已经好多年没有安装过了,重温一下金仓数据库安装,体验一下最新版本,也做一个新版本的试验环境; 一、…...

条款6:auto推导若非己愿,使用显式类型初始化惯用法
一、代理类 所谓的代理类就是以模仿和增强一些类型的行为为目的存在的类 class MyArray { public:class MyArraySize{public:MyArraySize(int size) : theSize(size) {}int size() const { return theSize; }operator int() const { return theSize; }private:int theSize;};…...

蓝桥杯物联网开发板硬件组成
第一节 开发板简介 物联网设计与开发竞赛实训平台由蓝桥杯大赛技术支持单位北京四梯科技有限公司设计和生产,该产品可用于参加蓝桥杯物联网设计与开发赛道的竞赛实训或院校相关课程的 实践教学环节。 开发板基于STM32WLE5无线微控制器设计,芯片提供了25…...

视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点
随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展࿰…...

(aaai2025) FD2-Net: Frequency-Driven Feature Decomposition Network
论文:FD2-Net: Frequency-Driven Feature Decomposition Network for Infrared-Visible Object Detection 代码:https://github.com/like413/FD2-Net 这个论文核心思想认为:多源融合目标检测方法忽略了频率上的互补特征,如可见光图…...

深度学习之目标检测——RCNN
Selective Search 背景:事先不知道需要检测哪个类别,且候选目标存在层级关系与尺度关系 常规解决方法:穷举法,在原始图片上进行不同尺度不同大小的滑窗,获取每个可能的位置 弊端:计算量大,且尺度不能兼顾 Selective …...