Move AI技术浅析(四):运动跟踪与估计
一、运动跟踪与估计模块概述
运动跟踪与估计 是 Move AI 的核心模块之一,其主要任务是从提取到的关键点特征中,分析和理解运动的动态特性,包括运动轨迹、速度、加速度、方向等。该模块通常包括 时间序列分析 和 运动估计 两个子模块。
- 时间序列分析:分析关键点随时间变化的数据,捕捉运动的动态特性。
- 运动估计:估计运动的参数,如速度、加速度、方向等。
二、时间序列分析详解
2.1 时间序列分析步骤详解
2.1.1 时间序列数据生成
首先,需要将关键点的坐标数据表示为时间序列数据。假设关键点的坐标为 ,则时间序列数据可以表示为:

其中 是时间步长。
2.1.2 时间序列分析方法
时间序列分析方法可以分为以下几类:
1.统计方法:
- 自回归模型(AR):使用过去的值来预测当前值。
- 移动平均模型(MA):使用过去的误差来预测当前值。
- 自回归滑动平均模型(ARMA):结合 AR 和 MA 模型。
2.机器学习方法:
- 递归神经网络(RNN):专门用于处理序列数据的神经网络。
- 长短期记忆网络(LSTM):一种特殊的 RNN,具有记忆单元,可以处理长距离的时间依赖性。
- 门控循环单元(GRU):LSTM 的简化版本,具有更少的参数和更快的训练速度。
3.深度学习方法:
- 时间卷积网络(TCN):基于卷积神经网络(CNN)的时间序列分析模型,具有并行计算的优势。
2.2 时间序列分析模型详解
2.2.1 递归神经网络(RNN)
RNN 是一种专门用于处理序列数据的神经网络。其主要步骤如下:
1.输入序列:将时间序列数据输入到 RNN 中。
2.隐藏状态更新:使用递归公式更新隐藏状态。
3.输出预测:根据隐藏状态进行输出预测。
过程模型:

公式:
-
隐藏状态更新:

其中
是当前隐藏状态,
是当前输入,
是前一个隐藏状态,
,
,
是权重和偏置。
-
输出预测:

其中
是当前输出,
,
是权重和偏置。
2.2.2 长短期记忆网络(LSTM)
LSTM 是一种特殊的 RNN,具有记忆单元,可以处理长距离的时间依赖性。其主要步骤如下:
1.输入门:控制输入信息进入记忆单元。
2.遗忘门:控制记忆单元中信息的遗忘。
3.输出门:控制记忆单元中信息的输出。
4.记忆单元更新:更新记忆单元中的信息。
过程模型:
![]()
公式:
-
输入门:

-
遗忘门:

-
输出门:

-
记忆单元更新:

-
输出预测:

2.2.3 时间卷积网络(TCN)
TCN 是一种基于 CNN 的时间序列分析模型,具有并行计算的优势。其主要步骤如下:
1.因果卷积:使用因果卷积处理时间序列数据。
2.残差连接:使用残差连接解决梯度消失问题。
3.扩张卷积:使用扩张卷积扩大感受野。
过程模型:

公式:
-
因果卷积:

-
扩张卷积:

其中
是扩张因子。
三、运动估计详解
3.1 运动估计步骤详解
3.1.1 运动参数估计
运动估计的主要任务是估计运动的参数,如速度、加速度、方向等。以下是常见的运动参数估计方法:
1.速度估计:
- 方法:计算关键点在一段时间内的位移。
- 公式:

2.加速度估计:
- 方法:计算速度的变化率。
- 公式:

3.方向估计:
- 方法:分析关键点的运动轨迹,计算运动方向。
- 公式:

3.2 运动估计模型总结
3.2.1 速度估计模型

3.2.2 加速度估计模型

3.2.3 方向估计模型

相关文章:
Move AI技术浅析(四):运动跟踪与估计
一、运动跟踪与估计模块概述 运动跟踪与估计 是 Move AI 的核心模块之一,其主要任务是从提取到的关键点特征中,分析和理解运动的动态特性,包括运动轨迹、速度、加速度、方向等。该模块通常包括 时间序列分析 和 运动估计 两个子模块。 时间…...
NCR+可变电荷块3——NCB/cell绘图1
文献method参考: 蛋白质序列数据从uniprot中获取 https://www.uniprot.org/uniprotkb/P46013/entry https://www.uniprot.org/uniprotkb/P06748/entry、 1,电荷分布计算: Charge distribution was calculated as the sum of the charges …...
数据仓库是什么?数据仓库简介
数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持企业的管理决策。以下是对数据仓库的详细解释: 一、定义与特性 定义:数据仓库是构建在组织的现有数据基础上&#x…...
AI的进阶之路:从机器学习到深度学习的演变(二)
AI的进阶之路:从机器学习到深度学习的演变(一) 三、机器学习(ML):AI的核心驱动力 3.1 机器学习的核心原理 机器学习(Machine Learning, ML)突破了传统编程的局限,它不再…...
C++中属性(Attributes)
属性(Attributes)在 C 中的完整讲解 在 C 中,属性(Attributes) 是一种编译时机制,用于附加元数据到函数、变量、类型等元素上,以指导编译器如何优化、检查、警告或者改变编译行为。通过属性&am…...
Go语言中的defer,panic,recover 与错误处理
目录 前言 三个关键字 defer语句 panic语句 recover函数 defer、panic、recover组成的错误处理 总结 前言 在其他编程语言中,如Java,宕机往往以异常的形式存在。底层抛出异常,上层逻辑通过try...catch...fanally机制捕获异常并处理&am…...
(C语言)力扣 904.水果成篮
写在所有的前面: 本文采用C语言实现代码 目录 写在所有的前面:题目说明题目:力扣 904.水果成篮题目出处题目描述Description输入Input输出Output样例Sample限制Hint 解答说明方案解题思路一般情况特殊情况 代码实现其他解释 题目说明 题目…...
2024 年12月英语六级CET6听力原文(Lecture部分)
2024 年12月英语六级CET6听力原文(Long Conersation和Passage) 1 牛津大学关于普遍道德准则的研究及相关观点与建议 译文 2 食物颜色对味觉体验及大脑预期的影响 译文 3 财务资源对意义与幸福之间关系的影响研究 译文...
CentOS下,离线安装vscode的步骤;
前置条件: 1.CentOS7; 步骤: 1.下载vscode指定版本,例如; 例如 code-1.83.1-1696982959.el7.x86_64.rpm 2.使用下面命令: sudo rpm -ivh code-1.83.1-1696982959.el7.x86_64.rpm 其他: 卸载vscode的命…...
ubuntu停止.netcore正在运行程序的方法
在Ubuntu系统中停止正在运行的.NET Core程序,你可以使用以下几种方法: 使用kill命令: 如果你知道.NET Core程序的进程ID(PID),你可以直接使用kill命令来停止它。首先,使用ps命令配合grep来查找.…...
机器学习基础 衡量模型性能指标
目录 1 前言 编辑1.1 错误率(Error rate)&精度(Accuracy)&误差(Error): 1.2 过拟合(overfitting): 训练误差小,测试误差大 1.3 欠拟合(underfitting):训练误差大,测试误差大 1.4 MSE: 1.5 RMSE: 1.6 MAE: 1.7 R-S…...
《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)及形态学处理
文章目录 《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)边界填充阈值处理图像平滑处理生成椒盐图片均值滤波处理方框滤波处理高斯滤波处理中值滤波处理 图像形态学腐蚀膨胀开运算闭运算顶帽和黑帽 《OpenCV计算机视觉》-对图片…...
如何让Tplink路由器自身的IP网段 与交换机和电脑的IP网段 保持一致?
问题分析: 正常情况下,我的需求是:电脑又能上网,又需要与路由器处于同一局域网下(串流Pico4 VR眼镜),所以,我是这么连接 交换机、路由器、电脑 的: 此时,登录…...
【JetPack】Navigation知识点总结
Navigation的主要元素: 1、Navigation Graph: 一种新的XML资源文件,包含应用程序所有的页面,以及页面间的关系。 <?xml version"1.0" encoding"utf-8"?> <navigation xmlns:android"http://schemas.a…...
InnoDB引擎的内存结构
InnoDB擅长处理事务,具有自动崩溃恢复的特性 架构图: 由4部分组成: 1.Buffer Pool:缓冲池,缓存表数据和索引数据,减少磁盘I/O操作,提升效率 2.change Buffer:写缓冲区,…...
Y3地图制作1:水果缤纷乐、密室逃脱
文章目录 一、水果缤纷乐1.1 游戏设计1.1.1 项目解析1.1.2 项目优化1.1.3 功能拆分 1.2 场景制作1.2.1 场景需求1.2.2 创建主镜头、绘制草稿,构思文案和情景1.2.3 构建场景地图1.2.4 光源与氛围设置 1.3 游戏初始化1.3.1 物编、UI预设置1.3.2 游戏初始化1.3.2 玩家初…...
ESP32_H2(IDF)学习系列-ADC模数转换(连续转换)
一、简介(节选手册) 1 概述 ESP32-H2 搭载了以下模拟外设: • 一个 12 位逐次逼近型模拟数字转换器 (SAR ADC),用于测量最多来自 5 个管脚上的模拟信号。 • 一个温度传感器,用于测量及监测芯片内部温度。 2 SAR ADC 2…...
如何通过TikTok成功引流到独立站
随着短视频平台的迅猛发展,TikTok已成为全球最受欢迎的社交媒体之一,尤其是在年轻用户群体中更是势不可挡。如果你是一个独立站(如电商网站、博客、个人品牌站等)的运营者,那么如何通过TikTok引流到独立站已经成为一个…...
生成签名文件 .keystore
打开java sdk 到bin目录(D:\JDK\Java\jdk1.8.0_202\bin),打开dos窗口执行以下命令: 命令行输入: 1、生成签名文件:(-alias 别名 validity 有效期 9125 天) keytool -genkeypair -v…...
Mono里运行C#脚本3—mono_jit_init
前面已经介绍了配置参数的读取,这样就可以把一些特殊的配置读取进来,完成了用户配置阶段的参数,接着下来就需要进行大工程的建造了。 为什么这样说呢,因为需要解释并执行C#编译的受托管的代码,相当于就是建立一个C#代码运行的虚拟机,而这个虚拟机还是很复杂的,不但要支…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
