当前位置: 首页 > news >正文

OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

目录

图片修改(打码、组合、缩放)

图像运算

边缘填充

​阈值处理


上一篇文章: OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道

图片修改(打码、组合、缩放)
# 图片打码
import numpy as np
a = cv2.imread(r'opencv.png')
a[100:200,200:300] = np.random.randint(0,256,(100,100,3))#矩阵赋值必须是相同大小
cv2.imshow('masaike',a)
cv2.waitKey(1000000)
cv2.destroyAllWindows()

# 图片组合
import numpy as np
a = cv2.imread('opencv.png')
b = cv2.imread('python.png')
b[200:350,200:350] = a[150:300,150:300]#注意:矩阵的大小必须要统一。
cv2.imshow('b',b)
cv2.imshow('a',a)
cv2.waitKey(100000)
cv2.destroyAllWindows()
 
#图片缩放
a = cv2.imread('opencv.png')
# a_new = cv2.resize(a,(200,600))   # 宽、高
a_new = cv2.resize(a,dsize=None,fx=0.5,fy=0.5)
# print(a.shape)  # 高、宽 、通道数
cv2.imshow('original',a)
cv2.imshow('result',a_small)
cv2.waitKey(100000)
cv2.destroyAllWindows()

图像运算
图像加法运算
对于+号运算,当对图像a,图像b进行加法求和时,遵循以下规则:
当某位置像素相加得到的数值小于255时,该位置数值为两图像该位置像素相加之和,当某位置像素相加得到的数值大于255时,该位置数值将截断结果并将其减去256。例如:相加后是260,实际是260-256= 4
a = cv2.imread('python.png')
b = cv2.imread('opencv.png')
c = a+10    #图片,
cv2.imshow('yuan',a)
cv2.imshow('tupian',c)
cv2.waitKey(100000)
​
c = a[50:450,50:400]+b[50:450,50:400]
cv2.imshow('result_a+b',c)
cv2.waitKey(100000)

对于cv2.add()运算,当对图像a,图像b进行加法求和时,遵循以下规则:
当某位置像素相加得到的数值小于255时,该位置数值为两图像该位置像素相加之和
当某位置像素相加得到的数值大于255时,该位置数值为255
a = cv2.imread('timg98.jpg')
b = cv2.imread('zl.png')
b = cv2.resize(b,(400,400))
a = cv2.resize(a,(400,400))
c = cv2.add(a,b)   #也可以使用使用
cv2.imshow('result_a+b',c)
cv2.waitKey(100000)
cv2.destroyAllWindows()

图像加权运算, 就是在计算两幅图像的像素值之和时,将每幅图像的权重考虑进来,可以用公式表示为
dst=src1×α+src×β+γ
a = cv2.imread('timg98.jpg')
b = cv2.imread('zl.png')
b = cv2.resize(b,(400,400))
a = cv2.resize(a,(400,400))
#
c =cv2.addWeighted(a,0.2,b,0.8,10)   # 10:图像的亮度值(常数),将添加到加权和上
cv2.imshow('addWeighted',c)
cv2.waitKey(100000)
cv2.destroyAllWindows()
 
边缘填充
cv2.copyMakeBorder()是OpenCV库中的一个函数,用于给图像添加额外的边界(padding)。
copyMakeBorder(src: UMat, top: int, bottom: int, left: int, right: int, borderType: int, dst: UMat | None = ..., value: cv2.typing.Scalar = ...)
它有以下几个参数:
src:要扩充边界的原始图像。
top, bottom, left, right:相应方向上的边框宽度。
borderType:定义要添加边框的类型,它可以是以下的一种:
cv2.BORDER_CONSTANT:添加的边界框像素值为常数(需要额外再给定一个参数)。
cv2.BORDER_REFLECT:添加的边框像素将是边界元素的镜面反射,类似于gfedcba|abcdefgh|hgfedcba。 (交界处也复制了)
cv2.BORDER_REFLECT_101 或 cv2.BORDER_DEFAULT:和上面类似,但是有一些细微的不同,类似于gfedcb|abcdefgh|gfedcba  (交接处删除了)
cv2.BORDER_REPLICATE:使用最边界的像素值代替,类似于aaaaaa|abcdefgh|hhhhhhh
cv2.BORDER_WRAP:左右两边替换,cdefgh|abcdefgh|abcdefg
import cv2
ys = cv2.imread('yueshan.png')
top,bottom,left,right = 50,50,50,50
​
constant = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_CONSTANT,value=(0,0,0))
reflect = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT101)
replicate = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REPLICATE)
wrap = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_WRAP)
​
cv2.imshow('yuantu', ys)
cv2.waitKey(0)
cv2.imshow('CONSTANT', constant)
cv2.waitKey(0)
cv2.imshow('REFLECT', reflect)
cv2.waitKey(0)
cv2.imshow('REFLECT_101', reflect101)
cv2.waitKey(0)
cv2.imshow('REPLICATE', replicate)
cv2.waitKey(0)
cv2.imshow('WRAP', wrap)
cv2.waitKey(0)
阈值处理

阈值处理是指剔除图像内像素值高于一定值或低于一定值的像素点。例如,设定阈值为127.使用的方法为:

retval,dst=cv2.threshold(src,thresh,maxval,type)thresh:100,maxval:200 
retval代表返回的阈值 
dst代表阈值分割结果图像,与原始图像具有相同的大小和类型 
src代表要进行阈值分割的图像,可以是多通道的,8位或32位浮点型数值 
thresh代表要设定的阈值 
maxval代表type参数位THRESH_BINARY或者THRESH_BINARY_INV类型时,需要设定的最大值 
type代表阈值分割的类型,具体内容如下表所示:     
选项                 像素值>thresh      其他情况 
cv2.THRESH_BINARY         maxval           0 
cv2.THRESH_BINARY_INV       0           maxval 
cv2.THRESH_TRUNC          thresh       当前灰度值 
cv2.THRESH_TOZERO         当前灰度值        0 
cv2.THRESH_TOZERO_INV       0          当前灰度值
import cv2
image = cv2.imread('zl.png',cv2.IMREAD_GRAYSCALE) #灰度图,
ret, binary = cv2.threshold(image, 175, 255, cv2.THRESH_BINARY)
ret1, binaryinv = cv2.threshold(image, 175, 255, cv2.THRESH_BINARY_INV)
ret2, trunc = cv2.threshold(image, 175, 255, cv2.THRESH_TRUNC)
ret3, tozero = cv2.threshold(image, 175, 255, cv2.THRESH_TOZERO)
ret4, tozeroinv = cv2.threshold(image, 175, 255, cv2.THRESH_TOZERO_INV)
​
cv2.imshow('original', image)  #原灰度图
cv2.waitKey(0)
cv2.imshow('binary', binary)  #偏白的变纯白,偏黑的变纯黑
cv2.waitKey(0)
cv2.imshow('binaryinv', binaryinv)  #偏白的变纯黑,偏黑的变纯白
cv2.waitKey(0)
cv2.imshow('trunc', trunc)   #白色变得一样灰蒙蒙,偏黑的不变
cv2.waitKey(0)
cv2.imshow('tozero', tozero)  #偏白色不变,偏黑的就变纯黑
cv2.waitKey(0)
cv2.imshow('tozeroinv', tozeroinv)   #偏白色变纯黑,偏黑的不变
cv2.waitKey(0)

相关文章:

OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

目录 图片修改(打码、组合、缩放) 图像运算 边缘填充 ​阈值处理 上一篇文章: OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道 图片修改(打码、组合、缩放) # 图片打码 import numpy as np a cv2.imre…...

langchain使用FewShotPromptTemplate出现KeyError的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

tryhackme-Cyber Security 101-Linux Shells(linux命令框)

目的:了解脚本和不同类型的 Linux shell。 任务1:Introduction to Linux Shells(Linux Shell 简介) 作为操作系统的常规用户,我们都广泛使用图形用户界面 (GUI) 来执行大多数操作。只需点击几…...

亚远景-ISO 21434标准涵盖了哪些方面?

ISO 21434标准《道路车辆—网络安全工程》全面涵盖了汽车网络安全领域,其目的是确保汽车电子系统在整个产品生命周期中的网络安全性能。具体来说,该标准包括以下几个方面: 1. 术语和定义 :提供汽车网络安全相关的术语、概念和定义…...

第3章 集合与关系

2024年12月24日一稿 2024年12月26日二稿 🐰3.1 集合的概念和表示法 🦘3.1.1 集合的表示 🦘3.1.2 基本概念 🐰3.2 集合的运算 🦘3.2.1 集合的基本运算 🦘3.2.2 有穷计数集 🦘3.2.3 广义交和广义…...

【vmware】|设置共享文件夹

目的: 虚拟机中设置共享文件夹,本地物理机中可以搜到该共享文件夹 1、虚拟机: 设置共享文件夹 右键属性-共享页码进行下列设置 点击网络和共享中心,检查下列选项 二、在本地物理机中启用网络发现: 此时,刷新网络…...

Log4j1.27配置日志输出级别不起效

起因:构建独立版本debezuim使用时,日志一直打印debug信息。 原因:包冲突问题,进行排包操作。 参考log4j日志级别配置完成后不生效 系统一直打印debug日志_log4j不起作用-CSDN博客 1、application.properties logging.configc…...

计算机图形学知识点汇总

一、计算机图形学定义与内容 1.图形 图形分为“图”和“形”两部分。 其中,“形”指形体或形状,存在于客观世界和虚拟世界,它的本质是“表示”;而图则是包含几何信息与属性信息的点、线等基本图元构成的画面,用于表达…...

详解下c语言中struct和union的对齐规则

接触过c语言的同学应该都知道字节对齐。有些时候我们很容易弄错字节对齐的方式,特别是涉及到struct(结构体)和union(联合体)时。今天我们通过详细例子来说明下struct和union的对齐规则,以便了解各种struct和…...

ubuntu安装sublime安装与免费使用

1. ubuntu安装sublime 参考官网: Linux Package Manager Repositories 2. 破解过程 打开如下网址,打开/opt/sublime_text/sublime_text https://hexed.it/ 3. 替换在hexed打开的文件中查找并替换: 4180激活方法 使用二进制编辑器 8079 0500 0f94 c2替换为 c641 05…...

攻防世界 cookie

开启场景 Cookie(HTTP cookie)是一种存储在用户计算机上的小型文本文件。它由网站通过用户的浏览器在用户访问网站时创建,并存储一些用于跟踪和识别用户的信息。Cookie 主要用于在网站和浏览器之间传递数据,以便网站可以根据用户的…...

深度学习笔记1:神经网络与模型训练过程

参考博客:PyTorch深度学习实战(1)——神经网络与模型训练过程详解_pytorch 实战-CSDN博客 人工神经网络 ANN:张量及数学运算的集合,排列方式近似于松散的人脑神经元排列 组成 1)输入层 2)隐…...

什么是 DevOps 自动化?

DevOps 自动化是一种现代软件开发方法,它使用工具和流程来自动化任务并简化工作流程。它将开发人员、IT 运营和安全团队聚集在一起,帮助他们有效协作并交付可靠的软件。借助 DevOps 自动化,组织能够处理重复性任务、优化流程并更快地将应用程…...

使用 Python 操作 MySQL 数据库的实用工具类:MySQLHandler

操作数据库是非常常见的需求,使用 Python 和 pymysql 库封装一个通用的 MySQL 数据库操作工具类,并通过示例演示如何使用这个工具类高效地管理数据库。 工具类的核心代码解析 MySQLHandler 类简介 MySQLHandler 是一个 Python 类,用于简化…...

DB-GPT V0.6.3 版本更新:支持 SiliconCloud 模型、新增知识处理工作流等

DB-GPT V0.6.3版本现已上线,快速预览新特性: 新特性 1. 支持 SiliconCloud 模型,让用户体验多模型的管理能力 如何使用: 修改环境变量文件.env,配置SiliconCloud模型 # 使用 SiliconCloud 的代理模型 LLM_MODELsiliconflow_p…...

亚式期权定价模型Turnbull-Wakeman进行delta对冲

Turnbull-Wakeman Model是一种用于定价和对冲亚式期权的数学模型。该模型由David Turnbull和Keith Wakeman在1990年提出,用于解决亚式期权的定价问题。 亚式期权是一种路径依赖类型的期权,其期权价格与标的资产价格某个期间内的平均值有关,假…...

Java的list中状态属性相同返回true的实现方案

文章目录 项目背景方案一、for循环实现实现思路 方案二、stream实现实现思路 项目背景 在项目中会遇到list中多个状态判断,状态值相等时,总体返回为true。 方案一、for循环实现 实现思路 遍历list,当出现不一致时,直接跳出循环…...

在 React 项目中安装和配置 Three.js

React 与 Three.js 的结合 :通过 React 管理组件化结构和应用逻辑,利用 Three.js 实现 3D 图形的渲染与交互。使用这种方法,我们可以在保持代码清晰和结构化的同时,实现令人惊叹的 3D 效果。 在本文中,我们将以一个简…...

服务器压力测试怎么做

在部署任何Web应用程序或服务之前,进行服务器压力测试(也称为负载测试)是确保系统能够处理预期用户流量的关键步骤。通过模拟大量并发请求,可以评估服务器的性能、稳定性和响应时间,识别潜在瓶颈,并优化资源…...

TCN-Transformer+LSTM多变量回归预测(Matlab)添加气泡图、散点密度图

TCN-TransformerLSTM多变量回归预测(Matlab)添加气泡图、散点密度图 目录 TCN-TransformerLSTM多变量回归预测(Matlab)添加气泡图、散点密度图预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基本介绍 1.双路创新&#xff…...

云计算——弹性云计算器(ECS)

弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

安卓基础(aar)

重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...