Django models中的增删改查与MySQL SQL的对应关系
在 Django 中,models 提供了一种高层次的抽象来与数据库进行交互,使得开发者可以使用 Python 代码而非直接编写 SQL 来执行增删改查(CRUD)操作。下面将详细介绍 Django 的 ORM(对象关系映射)操作如何对应到 MySQL 的 SQL 查询。
创建 (Create)
Django Models:
# 创建并保存一个新对象
new_entry = MyModel(field1='value1', field2='value2')
new_entry.save()
MySQL SQL:
INSERT INTO myapp_mymodel (field1, field2) VALUES ('value1', 'value2');
读取 (Read)
获取单个对象
Django Models:
# 根据主键获取一个对象
entry = MyModel.objects.get(id=1)
MySQL SQL:
SELECT * FROM myapp_mymodel WHERE id = 1;
获取多个对象
Django Models:
# 获取所有对象
entries = MyModel.objects.all()# 使用过滤条件获取对象
filtered_entries = MyModel.objects.filter(field1='value1')
MySQL SQL:
-- 获取所有对象
SELECT * FROM myapp_mymodel;-- 使用 WHERE 子句过滤
SELECT * FROM myapp_mymodel WHERE field1 = 'value1';
聚合查询
Django Models:
from django.db.models import Count# 统计总数
count = MyModel.objects.count()# 分组统计
grouped = MyModel.objects.values('field1').annotate(count=Count('id'))
MySQL SQL:
-- 统计总数
SELECT COUNT(*) FROM myapp_mymodel;-- 分组统计
SELECT field1, COUNT(id) AS count FROM myapp_mymodel GROUP BY field1;
更新 (Update)
Django Models:
# 更新单个对象
entry = MyModel.objects.get(id=1)
entry.field1 = 'new_value'
entry.save()# 批量更新
MyModel.objects.filter(field1='old_value').update(field1='new_value')
MySQL SQL:
-- 更新单个对象
UPDATE myapp_mymodel SET field1 = 'new_value' WHERE id = 1;-- 批量更新
UPDATE myapp_mymodel SET field1 = 'new_value' WHERE field1 = 'old_value';
删除 (Delete)
Django Models:
# 删除单个对象
entry = MyModel.objects.get(id=1)
entry.delete()# 批量删除
MyModel.objects.filter(field1='value1').delete()
MySQL SQL:
-- 删除单个对象
DELETE FROM myapp_mymodel WHERE id = 1;-- 批量删除
DELETE FROM myapp_mymodel WHERE field1 = 'value1';
高级查询
Django 的 ORM 还支持更复杂的查询,例如联合查询、子查询等,这些都可以通过 Django 的 Q 对象和 F 表达式来实现。对于非常复杂的查询,如果 ORM 不足以满足需求,Django 还允许直接执行原始 SQL 查询:
from django.db import connectiondef custom_sql(query, params=None):with connection.cursor() as cursor:cursor.execute(query, params)return cursor.fetchall()
这使得您可以根据需要灵活地选择是使用 ORM 抽象还是直接编写 SQL 查询。
总之,Django 的 ORM 提供了一个强大而灵活的方式来与数据库交互,简化了数据访问层的开发工作,并且自动处理了许多底层细节,如事务管理、连接池等。同时,它也保持了足够的灵活性,以应对复杂的查询需求。
相关文章:
Django models中的增删改查与MySQL SQL的对应关系
在 Django 中,models 提供了一种高层次的抽象来与数据库进行交互,使得开发者可以使用 Python 代码而非直接编写 SQL 来执行增删改查(CRUD)操作。下面将详细介绍 Django 的 ORM(对象关系映射)操作如何对应到…...
双指针——快乐数
一.题目描述 202. 快乐数 - 力扣(LeetCode) 二.题目解析 我们要判断一个数是不是快乐数要通过它的三个性质来进行判断。这个数会一直变化,由它的各个位的平方和重新构成这个数。如果这个数在变化的过程中变成了1,那么就是快乐数…...
Docker 默认安装位置迁移
一、找到 Docker 默认安装位置 [roothost-192-168-0-1 ~]# docker info Client:Version: 26.1.0Context: defaultDebug Mode: falseServer:Containers: 31Running: 31Paused: 0Stopped: 0Images: 128Server Version: 26.1.0Storage Driver: overlay2Backing Filesystem:…...
jmeter跨进程实现变量共享-全局变量
jmeter跨进程实现变量共享-全局变量 例如:登录一次,后面业务进行多线程并发场景 新增一个setUp线程组,在setUp线程组下,添加登录接口 使用json提取器,提取token Authorization $.token 0添加BeanShell 后置处理程序…...
Vue.js组件(6):echarts组件
1 前言 本章主要对常用的echars图表展示进行基本的组件封装。使用该组件前需要在项目中引入echarts。官网:Apache ECharts npm install echarts --save 2 图表组件 2.1 折线图组件 组件属性:chartId,指定图表挂载div的id,注意不…...
yolov3算法及其改进
yolov3算法及其改进 1、yolov3简介2、yolov3的改进2.1、backbone的改进2.1.1、darknet19相对于vgg16有更少的参数,同时具有更快的速度和更高的精度2.1.2、resnet101和darknet53,同样具有残差结构,精度也类似,但是darknet具有更高的速度2.2、FPN2.3、anchor-base与grid-cell…...
Python + 深度学习从 0 到 1(02 / 99)
希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持! ⭐ 手写数字分类: Keras MNIST 数据集 手写数字分类…...
HTML+CSS+JS制作在线书城网站(内附源码,含5个页面)
一、作品介绍 HTMLCSSJS制作一个在线书城网站,包含首页、分类页、排行榜页、新书上架页、特惠专区页等5个静态页面。其中每个页面都包含一个导航栏、一个主要区域和一个底部区域。 二、页面结构 1. 顶部导航栏 包含网站Logo、搜索框、用户登录/注册入口、购物车图…...
【FastAPI】中间件
【FastAPI】中间件 一、概述二、作用2.1 日志记录与监控2.2 身份验证与授权2.3 CORS(跨域资源共享)2.4 Gzip压缩2.5 会话管理2.6 自定义功能2.7 执行顺序 三、 总结四、相关链接 一、概述 FastAPI的中间件提供了一种强大的机制,允许开发者在…...
5个实用的设计相关的AI网站
在这个日新月异的数字时代,我们不断面临着新的挑战和机遇。随着人工智能(AI)技术的飞速发展,越来越多的AI工具开始融入到设计相关的工作流程中,极大地提升了工作效率和创作能力。今天,我非常兴奋地向大家介…...
STL 六大组件
C STL(标准模板库)主要由六大组件构成,它们相互协作,为C程序员提供了功能强大且高效的通用数据结构和算法工具,以下是对这六大组件的详细介绍: 1. 容器(Containers) 概述ÿ…...
Python选择题训练工具:高效学习、答题回顾与音频朗读一站式体验
一、引言 随着人工智能技术的不断进步,传统的教学方式已经逐渐向智能化、互动化转变。在众多英语测试题型中,选择题作为一种高效的方式被广泛应用于各类培训与考试中。为了帮助学生高效学习与自测,本篇文章将采用Python编写一款基于 Python …...
Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架
以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。 1. 数据收集(爬虫)…...
AWS Certified AI Practitioner 自学考试心得
学习目标: 考取 AWS Certified AI Practitioner 那什么是 AWS Certified AI Practitioner 认证 是基础级的认证 比较简单 — 学习内容: 1. AWS网站自学网站 极客时间免费课程:http://gk.link/a/12sJL 配合极客时间课程的章节测试检验自…...
JQ中的each()方法与$.each()函数的使用区别
介绍 jquery里的 each() 是一个强大的遍历工具,用于迭代集合中的元素,并为每个元素执行指定的函数。它既可以用于遍历 jQuery对象集合,也可以用于遍历普通的数组或对象。 each()对象遍历 语法: $(selector).each(function(in…...
滚珠丝杆与直线导轨的区别
滚珠丝杆和直线导轨是两种常见的精密机械传动装置,它们的作用是实现直线运动,在工业自动化和精密机械领域中扮演着重要的角色。尽管它们都用于实现直线运动,但它们在结构以及性能特点上还是存在一些区别: 一、工作原理 1、滚珠丝…...
【Ovis】Ovis1.6的本地部署及推理
Ovis简介 Ovis是阿里国际AI团队开源的多模态大模型,看新闻介绍效果不错,在多个场景的测试下都能达到SOTA,其中的Ovis1.6-Gemma2-9B在30B参数以下的模型中取得了综合排名第一,赶超MiniCPM-V-2.6等行业优秀大模型。所以我也部署一个…...
C语言结构体位定义(位段)的实际作用深入分析
1、结构体位段格式 struct struct_name {type [member_name] : width; };一般定义结构体,成员都是int、char等类型,占用的空间大小是固定的在成员名称后用冒号来指定位宽,可以指定每个成员所占用空间,并且也不用受结构体成员起始…...
儿童影楼管理系统:基于SSM的创新设计与功能实现
3.1系统的需求分析 需求分析阶段是设计系统功能模块的总方向,可以这样来说,系统的整个的开发流程以及设计进度,基本上都是以需求分析为基本依据的[10]。需求分析阶段可以确定系统的基本功能设计,以及在最后的系统验收阶段…...
青蛇人工智能学家
青蛇人工智能学家 青蛇,是蓝星上,最出名的人工智能学家。 在蓝星上,大家都知道,青蛇人工智能学家,最大的爱好,是美食。 青蛇人工智能学家,对自己的食物,非常在意,对自己的…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
