【唐叔学算法】第18天:解密选择排序的双重魅力-直接选择排序与堆排序的Java实现及性能剖析
引言
在数据排序的世界里,选择排序是一类简单而直观的算法,它通过不断选取未排序部分中的最小(或最大)元素来逐步构建有序序列。今天,我们将深入探讨两种基于选择思想的排序方法——直接选择排序和堆排序,并提供它们的Java实现代码。此外,我们还会分析这两种排序算法的时间复杂度和空间复杂度,帮助你理解其背后的运作机制。
直接选择排序(Selection Sort)
算法描述
直接选择排序是一种最基础的选择排序形式。它的基本思想是每次从未排序的元素中选出最小的一个元素,然后将其与未排序部分的第一个元素交换位置。如此反复,直到所有元素都被排好序为止。
时间复杂度
- 最佳、平均和最差情况均为 O(n²),其中 n 是待排序数组的长度。
空间复杂度
- 因为只需要常数级别的额外空间,所以空间复杂度为 O(1)。
Java实现
public class SelectionSort {public static void sort(int[] arr) {for (int i = 0; i < arr.length - 1; i++) {int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换找到的最小元素和当前元素int temp = arr[minIndex];arr[minIndex] = arr[i];arr[i] = temp;}}public static void main(String[] args) {int[] data = {64, 25, 12, 22, 11};sort(data);System.out.println("Sorted array: " + Arrays.toString(data));}
}
堆排序(Heap Sort)
算法描述
堆排序利用了二叉堆的数据结构特性。首先将待排序的数组构建成一个大根堆(对于升序排列),接着依次取出堆顶的最大元素放到数组末尾,再调整剩余元素重新构成大根堆,重复此过程直至所有元素都被排序。
时间复杂度
- 构建堆的时间复杂度为 O(n),而每一次调整堆的操作时间复杂度为 O(log n),因此总的时间复杂度为 O(n log n)。
空间复杂度
- 和直接选择排序一样,堆排序的空间复杂度也是 O(1),因为它是在原地进行排序。
Java实现
public class HeapSort {public static void sort(int[] arr) {int n = arr.length;// 构建大根堆for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// 一个个从堆中提取元素for (int i = n - 1; i >= 0; i--) {// 移动当前根到末尾int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 调用heapify函数在减少的堆上heapify(arr, i, 0);}}// 对大小为n的以i为根节点的堆进行heapify操作private static void heapify(int[] arr, int n, int i) {int largest = i; // 初始化最大的为根int left = 2 * i + 1; // 左子节点int right = 2 * i + 2; // 右子节点// 如果左子节点大于根if (left < n && arr[left] > arr[largest])largest = left;// 如果右子节点大于最大的if (right < n && arr[right] > arr[largest])largest = right;// 如果最大的不是根if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;// 递归地heapify受影响的子树heapify(arr, n, largest);}}public static void main(String[] args) {int[] data = {12, 11, 13, 5, 6, 7};sort(data);System.out.println("Sorted array is: " + Arrays.toString(data));}
}
结语
通过上述讲解,我们可以看出直接选择排序和堆排序虽然都属于选择排序,但它们有着显著的不同之处。前者更易于理解和实现,但在处理大数据量时效率较低;后者则具有更好的性能表现,特别是在需要频繁访问最大或最小值的应用场景下。希望这篇文章能为你揭开选择排序的神秘面纱,并为你的编程之旅增添一份力量。
相关文章:
【唐叔学算法】第18天:解密选择排序的双重魅力-直接选择排序与堆排序的Java实现及性能剖析
引言 在数据排序的世界里,选择排序是一类简单而直观的算法,它通过不断选取未排序部分中的最小(或最大)元素来逐步构建有序序列。今天,我们将深入探讨两种基于选择思想的排序方法——直接选择排序和堆排序,…...
2008-2020年各省技术服务水平相关指标数据
2008-2020年各省技术服务水平相关指标数据 1.时间:2008-2020年 2.指标:行政区划代码、地区、年份、信息传输、软件和信息技术服务业城镇单位就业人员(万人)、软件业务收入(万元)、高技术产品出口额占商品出口额比重(%) 3.范围&…...
机器学习DAY4续:梯度提升与 XGBoost (完)
本文将通过 XGBoost 框架来实现回归、分类和排序任务,帮助理解和掌握使用 XGBoost 解决实际问题的能力。我们将从基本的数据处理开始,逐步深入到模型训练、评估以及预测。最后,将模型进行保存和加载训练好的模型。 知识点 回归任务分类任务…...
ML-Agents:训练配置文件(一)
注:本文章为官方文档翻译,如有侵权行为请联系作者删除 Training Configuration File - Unity ML-Agents Toolkit–原文链接 常见训练器配置 关于训练,您需要做出的首要决定之一是使用哪种训练器:PPO、SAC 还是 POCA。有些训练配置…...
【物联网技术与应用】 实验13:雨滴传感器实验
实验13 雨滴传感器实验 【实验介绍】 雨滴传感器或雨滴检测传感器用于检测是否下雨以及降雨。广泛应用于汽车的雨刷系统、智能照明系统和天窗系统。 【实验组件】 ● Arduino Uno主板* 1 ● USB数据线*1 ● 雨滴传感器* 1 ● 雨滴传感器调理板* 1 ● 面包板*1 ● 9V方型…...
帝国cms电脑pc站url跳转到手机站url的方法
本文讲解一下帝国cms电脑网站跳转到手机动态网站和手机静态网站的方法,笔者以古诗词网 www.gushichi.com为例,为大家介绍操作步骤。方法一:帝国pc站跳转到手机静态站 1、假设我们有帝国cms 电脑网站www.XXX.com,手机网站m.XXX.com …...
Django models中的增删改查与MySQL SQL的对应关系
在 Django 中,models 提供了一种高层次的抽象来与数据库进行交互,使得开发者可以使用 Python 代码而非直接编写 SQL 来执行增删改查(CRUD)操作。下面将详细介绍 Django 的 ORM(对象关系映射)操作如何对应到…...
双指针——快乐数
一.题目描述 202. 快乐数 - 力扣(LeetCode) 二.题目解析 我们要判断一个数是不是快乐数要通过它的三个性质来进行判断。这个数会一直变化,由它的各个位的平方和重新构成这个数。如果这个数在变化的过程中变成了1,那么就是快乐数…...
Docker 默认安装位置迁移
一、找到 Docker 默认安装位置 [roothost-192-168-0-1 ~]# docker info Client:Version: 26.1.0Context: defaultDebug Mode: falseServer:Containers: 31Running: 31Paused: 0Stopped: 0Images: 128Server Version: 26.1.0Storage Driver: overlay2Backing Filesystem:…...
jmeter跨进程实现变量共享-全局变量
jmeter跨进程实现变量共享-全局变量 例如:登录一次,后面业务进行多线程并发场景 新增一个setUp线程组,在setUp线程组下,添加登录接口 使用json提取器,提取token Authorization $.token 0添加BeanShell 后置处理程序…...
Vue.js组件(6):echarts组件
1 前言 本章主要对常用的echars图表展示进行基本的组件封装。使用该组件前需要在项目中引入echarts。官网:Apache ECharts npm install echarts --save 2 图表组件 2.1 折线图组件 组件属性:chartId,指定图表挂载div的id,注意不…...
yolov3算法及其改进
yolov3算法及其改进 1、yolov3简介2、yolov3的改进2.1、backbone的改进2.1.1、darknet19相对于vgg16有更少的参数,同时具有更快的速度和更高的精度2.1.2、resnet101和darknet53,同样具有残差结构,精度也类似,但是darknet具有更高的速度2.2、FPN2.3、anchor-base与grid-cell…...
Python + 深度学习从 0 到 1(02 / 99)
希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持! ⭐ 手写数字分类: Keras MNIST 数据集 手写数字分类…...
HTML+CSS+JS制作在线书城网站(内附源码,含5个页面)
一、作品介绍 HTMLCSSJS制作一个在线书城网站,包含首页、分类页、排行榜页、新书上架页、特惠专区页等5个静态页面。其中每个页面都包含一个导航栏、一个主要区域和一个底部区域。 二、页面结构 1. 顶部导航栏 包含网站Logo、搜索框、用户登录/注册入口、购物车图…...
【FastAPI】中间件
【FastAPI】中间件 一、概述二、作用2.1 日志记录与监控2.2 身份验证与授权2.3 CORS(跨域资源共享)2.4 Gzip压缩2.5 会话管理2.6 自定义功能2.7 执行顺序 三、 总结四、相关链接 一、概述 FastAPI的中间件提供了一种强大的机制,允许开发者在…...
5个实用的设计相关的AI网站
在这个日新月异的数字时代,我们不断面临着新的挑战和机遇。随着人工智能(AI)技术的飞速发展,越来越多的AI工具开始融入到设计相关的工作流程中,极大地提升了工作效率和创作能力。今天,我非常兴奋地向大家介…...
STL 六大组件
C STL(标准模板库)主要由六大组件构成,它们相互协作,为C程序员提供了功能强大且高效的通用数据结构和算法工具,以下是对这六大组件的详细介绍: 1. 容器(Containers) 概述ÿ…...
Python选择题训练工具:高效学习、答题回顾与音频朗读一站式体验
一、引言 随着人工智能技术的不断进步,传统的教学方式已经逐渐向智能化、互动化转变。在众多英语测试题型中,选择题作为一种高效的方式被广泛应用于各类培训与考试中。为了帮助学生高效学习与自测,本篇文章将采用Python编写一款基于 Python …...
Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架
以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。 1. 数据收集(爬虫)…...
AWS Certified AI Practitioner 自学考试心得
学习目标: 考取 AWS Certified AI Practitioner 那什么是 AWS Certified AI Practitioner 认证 是基础级的认证 比较简单 — 学习内容: 1. AWS网站自学网站 极客时间免费课程:http://gk.link/a/12sJL 配合极客时间课程的章节测试检验自…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
