【唐叔学算法】第18天:解密选择排序的双重魅力-直接选择排序与堆排序的Java实现及性能剖析
引言
在数据排序的世界里,选择排序是一类简单而直观的算法,它通过不断选取未排序部分中的最小(或最大)元素来逐步构建有序序列。今天,我们将深入探讨两种基于选择思想的排序方法——直接选择排序和堆排序,并提供它们的Java实现代码。此外,我们还会分析这两种排序算法的时间复杂度和空间复杂度,帮助你理解其背后的运作机制。
直接选择排序(Selection Sort)
算法描述
直接选择排序是一种最基础的选择排序形式。它的基本思想是每次从未排序的元素中选出最小的一个元素,然后将其与未排序部分的第一个元素交换位置。如此反复,直到所有元素都被排好序为止。
时间复杂度
- 最佳、平均和最差情况均为 O(n²),其中 n 是待排序数组的长度。
空间复杂度
- 因为只需要常数级别的额外空间,所以空间复杂度为 O(1)。
Java实现
public class SelectionSort {public static void sort(int[] arr) {for (int i = 0; i < arr.length - 1; i++) {int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换找到的最小元素和当前元素int temp = arr[minIndex];arr[minIndex] = arr[i];arr[i] = temp;}}public static void main(String[] args) {int[] data = {64, 25, 12, 22, 11};sort(data);System.out.println("Sorted array: " + Arrays.toString(data));}
}
堆排序(Heap Sort)
算法描述
堆排序利用了二叉堆的数据结构特性。首先将待排序的数组构建成一个大根堆(对于升序排列),接着依次取出堆顶的最大元素放到数组末尾,再调整剩余元素重新构成大根堆,重复此过程直至所有元素都被排序。
时间复杂度
- 构建堆的时间复杂度为 O(n),而每一次调整堆的操作时间复杂度为 O(log n),因此总的时间复杂度为 O(n log n)。
空间复杂度
- 和直接选择排序一样,堆排序的空间复杂度也是 O(1),因为它是在原地进行排序。
Java实现
public class HeapSort {public static void sort(int[] arr) {int n = arr.length;// 构建大根堆for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// 一个个从堆中提取元素for (int i = n - 1; i >= 0; i--) {// 移动当前根到末尾int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 调用heapify函数在减少的堆上heapify(arr, i, 0);}}// 对大小为n的以i为根节点的堆进行heapify操作private static void heapify(int[] arr, int n, int i) {int largest = i; // 初始化最大的为根int left = 2 * i + 1; // 左子节点int right = 2 * i + 2; // 右子节点// 如果左子节点大于根if (left < n && arr[left] > arr[largest])largest = left;// 如果右子节点大于最大的if (right < n && arr[right] > arr[largest])largest = right;// 如果最大的不是根if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;// 递归地heapify受影响的子树heapify(arr, n, largest);}}public static void main(String[] args) {int[] data = {12, 11, 13, 5, 6, 7};sort(data);System.out.println("Sorted array is: " + Arrays.toString(data));}
}
结语
通过上述讲解,我们可以看出直接选择排序和堆排序虽然都属于选择排序,但它们有着显著的不同之处。前者更易于理解和实现,但在处理大数据量时效率较低;后者则具有更好的性能表现,特别是在需要频繁访问最大或最小值的应用场景下。希望这篇文章能为你揭开选择排序的神秘面纱,并为你的编程之旅增添一份力量。
相关文章:
【唐叔学算法】第18天:解密选择排序的双重魅力-直接选择排序与堆排序的Java实现及性能剖析
引言 在数据排序的世界里,选择排序是一类简单而直观的算法,它通过不断选取未排序部分中的最小(或最大)元素来逐步构建有序序列。今天,我们将深入探讨两种基于选择思想的排序方法——直接选择排序和堆排序,…...
2008-2020年各省技术服务水平相关指标数据
2008-2020年各省技术服务水平相关指标数据 1.时间:2008-2020年 2.指标:行政区划代码、地区、年份、信息传输、软件和信息技术服务业城镇单位就业人员(万人)、软件业务收入(万元)、高技术产品出口额占商品出口额比重(%) 3.范围&…...
机器学习DAY4续:梯度提升与 XGBoost (完)
本文将通过 XGBoost 框架来实现回归、分类和排序任务,帮助理解和掌握使用 XGBoost 解决实际问题的能力。我们将从基本的数据处理开始,逐步深入到模型训练、评估以及预测。最后,将模型进行保存和加载训练好的模型。 知识点 回归任务分类任务…...
ML-Agents:训练配置文件(一)
注:本文章为官方文档翻译,如有侵权行为请联系作者删除 Training Configuration File - Unity ML-Agents Toolkit–原文链接 常见训练器配置 关于训练,您需要做出的首要决定之一是使用哪种训练器:PPO、SAC 还是 POCA。有些训练配置…...
【物联网技术与应用】 实验13:雨滴传感器实验
实验13 雨滴传感器实验 【实验介绍】 雨滴传感器或雨滴检测传感器用于检测是否下雨以及降雨。广泛应用于汽车的雨刷系统、智能照明系统和天窗系统。 【实验组件】 ● Arduino Uno主板* 1 ● USB数据线*1 ● 雨滴传感器* 1 ● 雨滴传感器调理板* 1 ● 面包板*1 ● 9V方型…...
帝国cms电脑pc站url跳转到手机站url的方法
本文讲解一下帝国cms电脑网站跳转到手机动态网站和手机静态网站的方法,笔者以古诗词网 www.gushichi.com为例,为大家介绍操作步骤。方法一:帝国pc站跳转到手机静态站 1、假设我们有帝国cms 电脑网站www.XXX.com,手机网站m.XXX.com …...
Django models中的增删改查与MySQL SQL的对应关系
在 Django 中,models 提供了一种高层次的抽象来与数据库进行交互,使得开发者可以使用 Python 代码而非直接编写 SQL 来执行增删改查(CRUD)操作。下面将详细介绍 Django 的 ORM(对象关系映射)操作如何对应到…...
双指针——快乐数
一.题目描述 202. 快乐数 - 力扣(LeetCode) 二.题目解析 我们要判断一个数是不是快乐数要通过它的三个性质来进行判断。这个数会一直变化,由它的各个位的平方和重新构成这个数。如果这个数在变化的过程中变成了1,那么就是快乐数…...
Docker 默认安装位置迁移
一、找到 Docker 默认安装位置 [roothost-192-168-0-1 ~]# docker info Client:Version: 26.1.0Context: defaultDebug Mode: falseServer:Containers: 31Running: 31Paused: 0Stopped: 0Images: 128Server Version: 26.1.0Storage Driver: overlay2Backing Filesystem:…...
jmeter跨进程实现变量共享-全局变量
jmeter跨进程实现变量共享-全局变量 例如:登录一次,后面业务进行多线程并发场景 新增一个setUp线程组,在setUp线程组下,添加登录接口 使用json提取器,提取token Authorization $.token 0添加BeanShell 后置处理程序…...
Vue.js组件(6):echarts组件
1 前言 本章主要对常用的echars图表展示进行基本的组件封装。使用该组件前需要在项目中引入echarts。官网:Apache ECharts npm install echarts --save 2 图表组件 2.1 折线图组件 组件属性:chartId,指定图表挂载div的id,注意不…...
yolov3算法及其改进
yolov3算法及其改进 1、yolov3简介2、yolov3的改进2.1、backbone的改进2.1.1、darknet19相对于vgg16有更少的参数,同时具有更快的速度和更高的精度2.1.2、resnet101和darknet53,同样具有残差结构,精度也类似,但是darknet具有更高的速度2.2、FPN2.3、anchor-base与grid-cell…...
Python + 深度学习从 0 到 1(02 / 99)
希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持! ⭐ 手写数字分类: Keras MNIST 数据集 手写数字分类…...
HTML+CSS+JS制作在线书城网站(内附源码,含5个页面)
一、作品介绍 HTMLCSSJS制作一个在线书城网站,包含首页、分类页、排行榜页、新书上架页、特惠专区页等5个静态页面。其中每个页面都包含一个导航栏、一个主要区域和一个底部区域。 二、页面结构 1. 顶部导航栏 包含网站Logo、搜索框、用户登录/注册入口、购物车图…...
【FastAPI】中间件
【FastAPI】中间件 一、概述二、作用2.1 日志记录与监控2.2 身份验证与授权2.3 CORS(跨域资源共享)2.4 Gzip压缩2.5 会话管理2.6 自定义功能2.7 执行顺序 三、 总结四、相关链接 一、概述 FastAPI的中间件提供了一种强大的机制,允许开发者在…...
5个实用的设计相关的AI网站
在这个日新月异的数字时代,我们不断面临着新的挑战和机遇。随着人工智能(AI)技术的飞速发展,越来越多的AI工具开始融入到设计相关的工作流程中,极大地提升了工作效率和创作能力。今天,我非常兴奋地向大家介…...
STL 六大组件
C STL(标准模板库)主要由六大组件构成,它们相互协作,为C程序员提供了功能强大且高效的通用数据结构和算法工具,以下是对这六大组件的详细介绍: 1. 容器(Containers) 概述ÿ…...
Python选择题训练工具:高效学习、答题回顾与音频朗读一站式体验
一、引言 随着人工智能技术的不断进步,传统的教学方式已经逐渐向智能化、互动化转变。在众多英语测试题型中,选择题作为一种高效的方式被广泛应用于各类培训与考试中。为了帮助学生高效学习与自测,本篇文章将采用Python编写一款基于 Python …...
Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架
以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。 1. 数据收集(爬虫)…...
AWS Certified AI Practitioner 自学考试心得
学习目标: 考取 AWS Certified AI Practitioner 那什么是 AWS Certified AI Practitioner 认证 是基础级的认证 比较简单 — 学习内容: 1. AWS网站自学网站 极客时间免费课程:http://gk.link/a/12sJL 配合极客时间课程的章节测试检验自…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
