37 Opencv SIFT 特征检测
文章目录
- Ptr<SIFT> SIFT::create
- 示例
Ptr SIFT::create
Ptr<SIFT> SIFT::create(int nfeatures = 0,int nOctaveLayers = 3,double contrastThreshold = 0.04,double edgeThreshold = 10,double sigma = 1.6
);参数说明:nfeatures:类型:int默认值:0描述:要保留的最大关键点数量。如果设置为 0 或负数,则不对关键点数量进行限制。nOctaveLayers:类型:int默认值:3描述:每个八度(octave)中的尺度层数量。这决定了金字塔每一层生成多少个尺度空间图像。更多的层意味着更精细的尺度变化检测。contrastThreshold:类型:double默认值:0.04描述:对比度阈值。只有当关键点的主曲率比这个阈值大时才会被保留。较高的值会减少检测到的关键点数量,但提高稳定性。较低的值则相反。edgeThreshold:类型:double默认值:10描述:边缘响应阈值。用于过滤掉那些位于边缘上的不稳定关键点。具体来说,它控制了Hessian矩阵两个特征值的比例。较小的值会导致更多的边缘点被保留,而较大的值则会更加严格地排除这些点。sigma:类型:double默认值:1.6描述:应用于初始图像的高斯模糊标准差。这是构建尺度空间金字塔的第一步,用来确保在不同尺度下的一致性。
示例
#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp> // 包含了OpenCV扩展功能模块,如SIFT等高级特征检测算法
#include <iostream>using namespace cv;
using namespace std;
using namespace cv::xfeatures2d; // 使用cv::xfeatures2d命名空间以访问SIFT类int main(int argc, char** argv) {// 加载灰度图像Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCALE);if (src.empty()) { // 检查是否成功加载图像printf("could not load image...\n");return -1;}namedWindow("input image", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示输入图像imshow("input image", src); // 显示输入图像// SIFT特征检测初始化int numFeatures = 400; // 设置SIFT算法要检测的最大特征点数量Ptr<SIFT> detector = SIFT::create(numFeatures); // 创建SIFT特征检测器实例vector<KeyPoint> keypoints; // 定义一个向量用于存储检测到的关键点detector->detect(src, keypoints, Mat()); // 在源图像中检测关键点,不使用掩码printf("Total KeyPoints : %d\n", keypoints.size()); // 打印检测到的总关键点数// 绘制关键点到图像Mat keypoint_img;drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT); // 绘制关键点,默认颜色,显示大小和方向namedWindow("SIFT KeyPoints", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示带有关键点的图像imshow("SIFT KeyPoints", keypoint_img); // 显示带有关键点的图像waitKey(0); // 等待按键事件return 0;
}
相关文章:
37 Opencv SIFT 特征检测
文章目录 Ptr<SIFT> SIFT::create示例 Ptr SIFT::create Ptr<SIFT> SIFT::create(int nfeatures 0,int nOctaveLayers 3,double contrastThreshold 0.04,double edgeThreshold 10,double sigma 1.6 );参数说明:nfeatures:类型&#x…...
Nginx界的天花板-Oracle 中间件OHS 11g服务器环境搭建
环境信息 服务器基本信息 如下表,本次安装总共使用2台服务器,具体信息如下: 服务器IP DNS F5配置 OHS1 172.xx.xx.xx ohs01.xxxxxx.com ohs.xxxxxx.com OHS2 172.xx.xx.xx ohs02.xxxxxx.com 服务器用户角色信息均为:…...
域名解析协议
一、DNS简述 DNS协议是一种应用层协议,用于将域名转换为对应的IP地址,使得客户端可以通过域名来访问Internet上的各种资源 DNS的基础设施是由分层的DNS服务器实现的分布式数据库,它运行在UDP之上,通常使用端口号53 DN…...
微信小程序给外面的view设置display:flex;后为什么无法给里面的view设置宽度
如果父盒子view设置了display:flex,子view设置宽度值无效,宽度值都是随着内容多少而改变: 问题视图: 原因: flex布局元素的子元素,自动获得了flex-shrink的属性 解决方法: 给子view增加:fl…...
Maven怎么会出现一个dependency-reduced-pom.xml的文件
问题 今天打包时突然发现,多出了一个名为dependency-reduced-pom.xml的文件 解决方法 由于使用了maven-shade-plugin插件导致的,在 <plugin> 标签下添加 <configuration><createDependencyReducedPom>false</createDependencyR…...
突发!!!GitLab停止为中国大陆、港澳地区提供服务,60天内需迁移账号否则将被删除
GitLab停止为中国大陆、香港和澳门地区提供服务,要求用户在60天内迁移账号,否则将被删除。这一事件即将引起广泛的关注和讨论。以下是对该事件的扩展信息: 1. 背景介绍:GitLab是一家全球知名的软件开发平台,提供代码托…...
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成了HarmonyOS Camera API的开发之后,我开始关注更复杂的系统级功能。在浏览HarmonyOS Next文档时,我发现了一个非常有趣的领域:数字版权管理(DRM)。最新的DRM API 13提供了强大的工具,用于保护数字内容…...
Vue 3 + Element Plus 实现文件上传组件:详细解析与实现指南
Vue 3 文件上传组件实现详解 在实际的前端开发中,文件上传是一个常见的需求,尤其是在需要处理文档、图片或其他类型文件的应用中。Vue 3 结合 Element Plus UI 组件库为我们提供了一个简单且灵活的文件上传解决方案。在这篇文章中,我们将详细…...
qt5.12.11+msvc编译器编译qoci驱动
1.之前编译过minGW编译器编译qoci驱动,很顺利就完成了,文章地址:minGW编译qoci驱动详解,今天按照之前的步骤使用msvc编译器进行编译,直接就报错了: 查了些资料,发现两个编译器在编译时,pro文件中引用的库不一样,下面是msvc编译器引用的库,其中编译引用的库我这里安装…...
Ubuntu 20.04 安装 LNMP
1. 更新系统 sudo apt update sudo apt upgrade2. 安装 Nginx sudo apt install nginx3. 安装 MariaDB (作为 MySQL 的替代) sudo apt install mariadb-server mariadb-client初始化 MariaDB 数据库(可选) sudo mysql_secure_installation4. 安装 PH…...
Llama 3 简介(一)
目录 1. 引言 1.1 Llama 3 的简介 1.2 性能评估 1.3 开源计划 1.4 多模态扩展 ps 1. 缩放法则 2. 超额训练(Over-training) 3. 计算训练预算 4. 如何逐步估算和确定最优模型? 2. 概述 2.1 Llama 3 语言模型开发两个主要阶段 2.2…...
在 CentOS 上安装 FFmpeg
在CentOS 上安装 FFmpeg 方法一:在线安装 添加 EPEL 和 RPM Fusion 源: sudo yum install epel-release sudo yum install https://download1.rpmfusion.org/free/el/rpmfusion-free-release-$(rpm -E %rhel).noarch.rpm安装 FFmpeg: sudo yu…...
Python------Pandas的数据结构
Pandas主要处理以下三个数据结构: 序列(Series) 数据帧(DataFrame) 面板(Panel) 数据结构维数描述序列11维结构,值可变,大小不变数据帧22维结构,值可变,大小可变,表结构面板3维标记,值可变…...
矩阵碰一碰发视频源码技术解析,支持OEM
一、引言 随着近场通信技术的不断发展,矩阵碰一碰发视频技术作为一种创新的交互方式,逐渐在各个领域崭露头角,如智能营销、展览展示、教育科普等场景中都有着广泛的应用前景。通过将多个碰一碰设备或感应区域组成矩阵形式,用户能够…...
【汇编语言】外中断(一)—— 外中断的魔法:PC机键盘如何触发计算机响应
文章目录 前言1. 背景介绍2. 接口芯片和端口3. 外中断信息3.1 什么是外中断信息3.2 外中断源的分类3.2.1 可屏蔽中断3.2.1.1 什么是可屏蔽中断?3.2.1.2 可屏蔽中断的处理过程 3.2.2 不可屏蔽中断3.2.2.1 什么是不可屏蔽中断?3.2.2.2 不可屏蔽中断的处理过…...
pymssql-2.1.4.dev5-cp37-cp37m-win_amd64.whl 安装
pip install pymssql 安装pymssql出现下面的问题 error: Microsoft Visual C 14.0 is required. Get it with “Microsoft Visual C Build Tools”: http://landinghub.visualstudio.com/visual-cpp-build-tools 因为要使用python连接sqlserver数据库,需要pymssq…...
在HTML中使用Vue如何使用嵌套循环把集合中的对象集合中的对象元素取出来(我的意思是集合中还有一个集合那种)
在 Vue.js 中处理嵌套集合(即集合中的对象包含另一个集合)时,使用多重 v-for 指令来遍历这些层次结构。每个 v-for 指令可以用于迭代一个特定级别的数据集,并且可以在模板中嵌套多个 v-for 来访问更深层次的数据。 例如ÿ…...
Apriori关联规则算法 HNUST【数据分析技术】(2025)
1.理论知识 Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。 Apriori算法的…...
Windows中Microsoft Edge兼容性问题|修复方案
针对Microsoft Edge浏览器在Windows系统中出现的兼容性问题解决步骤和策略: 作者是更改了注册表解决的,问题不一,大家遇到兼容性问题先按照第7个情况进行设置,大部分人是这个情况! 清理缓存和Cookies 按快捷键:ctrlshi…...
Android 蓝牙开发-传输数据
概述 传统蓝牙是通过建立REFCCOM sockect来进行通信的,类似于socket通信,一台设备需要开放服务器套接字并处于listen状态,而另一台设备使用服务器的MAC地址发起连接。连接建立后,服务器和客户端就都通过对BluetoothSocket进行读写…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
