当前位置: 首页 > news >正文

37 Opencv SIFT 特征检测

文章目录

  • Ptr<SIFT> SIFT::create
  • 示例

Ptr SIFT::create

Ptr<SIFT> SIFT::create(int nfeatures = 0,int nOctaveLayers = 3,double contrastThreshold = 0.04,double edgeThreshold = 10,double sigma = 1.6 
);参数说明:nfeatures:类型:int默认值:0描述:要保留的最大关键点数量。如果设置为 0 或负数,则不对关键点数量进行限制。nOctaveLayers:类型:int默认值:3描述:每个八度(octave)中的尺度层数量。这决定了金字塔每一层生成多少个尺度空间图像。更多的层意味着更精细的尺度变化检测。contrastThreshold:类型:double默认值:0.04描述:对比度阈值。只有当关键点的主曲率比这个阈值大时才会被保留。较高的值会减少检测到的关键点数量,但提高稳定性。较低的值则相反。edgeThreshold:类型:double默认值:10描述:边缘响应阈值。用于过滤掉那些位于边缘上的不稳定关键点。具体来说,它控制了Hessian矩阵两个特征值的比例。较小的值会导致更多的边缘点被保留,而较大的值则会更加严格地排除这些点。sigma:类型:double默认值:1.6描述:应用于初始图像的高斯模糊标准差。这是构建尺度空间金字塔的第一步,用来确保在不同尺度下的一致性。

示例

#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp> // 包含了OpenCV扩展功能模块,如SIFT等高级特征检测算法
#include <iostream>using namespace cv;
using namespace std;
using namespace cv::xfeatures2d; // 使用cv::xfeatures2d命名空间以访问SIFT类int main(int argc, char** argv) {// 加载灰度图像Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCALE);if (src.empty()) { // 检查是否成功加载图像printf("could not load image...\n");return -1;}namedWindow("input image", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示输入图像imshow("input image", src); // 显示输入图像// SIFT特征检测初始化int numFeatures = 400; // 设置SIFT算法要检测的最大特征点数量Ptr<SIFT> detector = SIFT::create(numFeatures); // 创建SIFT特征检测器实例vector<KeyPoint> keypoints; // 定义一个向量用于存储检测到的关键点detector->detect(src, keypoints, Mat()); // 在源图像中检测关键点,不使用掩码printf("Total KeyPoints : %d\n", keypoints.size()); // 打印检测到的总关键点数// 绘制关键点到图像Mat keypoint_img;drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT); // 绘制关键点,默认颜色,显示大小和方向namedWindow("SIFT KeyPoints", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示带有关键点的图像imshow("SIFT KeyPoints", keypoint_img); // 显示带有关键点的图像waitKey(0); // 等待按键事件return 0;
}

相关文章:

37 Opencv SIFT 特征检测

文章目录 Ptr<SIFT> SIFT::create示例 Ptr SIFT::create Ptr<SIFT> SIFT::create(int nfeatures 0,int nOctaveLayers 3,double contrastThreshold 0.04,double edgeThreshold 10,double sigma 1.6 );参数说明&#xff1a;nfeatures&#xff1a;类型&#x…...

Nginx界的天花板-Oracle 中间件OHS 11g服务器环境搭建

环境信息 服务器基本信息 如下表&#xff0c;本次安装总共使用2台服务器&#xff0c;具体信息如下&#xff1a; 服务器IP DNS F5配置 OHS1 172.xx.xx.xx ohs01.xxxxxx.com ohs.xxxxxx.com OHS2 172.xx.xx.xx ohs02.xxxxxx.com 服务器用户角色信息均为&#xff1a;…...

域名解析协议

一、DNS简述 ‌DNS协议是一种应用层协议&#xff0c;用于将域名转换为对应的IP地址‌&#xff0c;使得客户端可以通过域名来访问Internet上的各种资源‌ DNS的基础设施是由分层的DNS服务器实现的分布式数据库&#xff0c;它运行在UDP之上‌&#xff0c;通常使用端口号53‌ DN…...

微信小程序给外面的view设置display:flex;后为什么无法给里面的view设置宽度

如果父盒子view设置了display:flex&#xff0c;子view设置宽度值无效&#xff0c;宽度值都是随着内容多少而改变&#xff1a; 问题视图&#xff1a; 原因&#xff1a; flex布局元素的子元素&#xff0c;自动获得了flex-shrink的属性 解决方法&#xff1a; 给子view增加:fl…...

Maven怎么会出现一个dependency-reduced-pom.xml的文件

问题 今天打包时突然发现&#xff0c;多出了一个名为dependency-reduced-pom.xml的文件 解决方法 由于使用了maven-shade-plugin插件导致的&#xff0c;在 <plugin> 标签下添加 <configuration><createDependencyReducedPom>false</createDependencyR…...

突发!!!GitLab停止为中国大陆、港澳地区提供服务,60天内需迁移账号否则将被删除

GitLab停止为中国大陆、香港和澳门地区提供服务&#xff0c;要求用户在60天内迁移账号&#xff0c;否则将被删除。这一事件即将引起广泛的关注和讨论。以下是对该事件的扩展信息&#xff1a; 1. 背景介绍&#xff1a;GitLab是一家全球知名的软件开发平台&#xff0c;提供代码托…...

自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统

在完成了HarmonyOS Camera API的开发之后&#xff0c;我开始关注更复杂的系统级功能。在浏览HarmonyOS Next文档时&#xff0c;我发现了一个非常有趣的领域&#xff1a;数字版权管理&#xff08;DRM&#xff09;。最新的DRM API 13提供了强大的工具&#xff0c;用于保护数字内容…...

Vue 3 + Element Plus 实现文件上传组件:详细解析与实现指南

Vue 3 文件上传组件实现详解 在实际的前端开发中&#xff0c;文件上传是一个常见的需求&#xff0c;尤其是在需要处理文档、图片或其他类型文件的应用中。Vue 3 结合 Element Plus UI 组件库为我们提供了一个简单且灵活的文件上传解决方案。在这篇文章中&#xff0c;我们将详细…...

qt5.12.11+msvc编译器编译qoci驱动

1.之前编译过minGW编译器编译qoci驱动,很顺利就完成了,文章地址:minGW编译qoci驱动详解,今天按照之前的步骤使用msvc编译器进行编译,直接就报错了: 查了些资料,发现两个编译器在编译时,pro文件中引用的库不一样,下面是msvc编译器引用的库,其中编译引用的库我这里安装…...

Ubuntu 20.04 安装 LNMP

1. 更新系统 sudo apt update sudo apt upgrade2. 安装 Nginx sudo apt install nginx3. 安装 MariaDB (作为 MySQL 的替代) sudo apt install mariadb-server mariadb-client初始化 MariaDB 数据库&#xff08;可选&#xff09; sudo mysql_secure_installation4. 安装 PH…...

Llama 3 简介(一)

目录 1. 引言 1.1 Llama 3 的简介 1.2 性能评估 1.3 开源计划 1.4 多模态扩展 ps 1. 缩放法则 2. 超额训练&#xff08;Over-training&#xff09; 3. 计算训练预算 4. 如何逐步估算和确定最优模型&#xff1f; 2. 概述 2.1 Llama 3 语言模型开发两个主要阶段 2.2…...

在 CentOS 上安装 FFmpeg

在CentOS 上安装 FFmpeg 方法一&#xff1a;在线安装 添加 EPEL 和 RPM Fusion 源&#xff1a; sudo yum install epel-release sudo yum install https://download1.rpmfusion.org/free/el/rpmfusion-free-release-$(rpm -E %rhel).noarch.rpm安装 FFmpeg&#xff1a; sudo yu…...

Python------Pandas的数据结构

Pandas主要处理以下三个数据结构&#xff1a; 序列(Series) 数据帧(DataFrame) 面板(Panel) 数据结构维数描述序列11维结构&#xff0c;值可变&#xff0c;大小不变数据帧22维结构&#xff0c;值可变&#xff0c;大小可变&#xff0c;表结构面板3维标记&#xff0c;值可变…...

矩阵碰一碰发视频源码技术解析,支持OEM

一、引言 随着近场通信技术的不断发展&#xff0c;矩阵碰一碰发视频技术作为一种创新的交互方式&#xff0c;逐渐在各个领域崭露头角&#xff0c;如智能营销、展览展示、教育科普等场景中都有着广泛的应用前景。通过将多个碰一碰设备或感应区域组成矩阵形式&#xff0c;用户能够…...

【汇编语言】外中断(一)—— 外中断的魔法:PC机键盘如何触发计算机响应

文章目录 前言1. 背景介绍2. 接口芯片和端口3. 外中断信息3.1 什么是外中断信息3.2 外中断源的分类3.2.1 可屏蔽中断3.2.1.1 什么是可屏蔽中断&#xff1f;3.2.1.2 可屏蔽中断的处理过程 3.2.2 不可屏蔽中断3.2.2.1 什么是不可屏蔽中断&#xff1f;3.2.2.2 不可屏蔽中断的处理过…...

pymssql-2.1.4.dev5-cp37-cp37m-win_amd64.whl 安装

pip install pymssql 安装pymssql出现下面的问题 error: Microsoft Visual C 14.0 is required. Get it with “Microsoft Visual C Build Tools”: http://landinghub.visualstudio.com/visual-cpp-build-tools 因为要使用python连接sqlserver数据库&#xff0c;需要pymssq…...

在HTML中使用Vue如何使用嵌套循环把集合中的对象集合中的对象元素取出来(我的意思是集合中还有一个集合那种)

在 Vue.js 中处理嵌套集合&#xff08;即集合中的对象包含另一个集合&#xff09;时&#xff0c;使用多重 v-for 指令来遍历这些层次结构。每个 v-for 指令可以用于迭代一个特定级别的数据集&#xff0c;并且可以在模板中嵌套多个 v-for 来访问更深层次的数据。 例如&#xff…...

Apriori关联规则算法 HNUST【数据分析技术】(2025)

1.理论知识 Apriori是一种常用的数据关联规则挖掘方法&#xff0c;它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取&#xff0c;其核心思想是通过连接产生候选项及其支持度&#xff0c;然后通过剪枝生成频繁项集。 Apriori算法的…...

Windows中Microsoft Edge兼容性问题|修复方案

针对Microsoft Edge浏览器在Windows系统中出现的兼容性问题解决步骤和策略&#xff1a; 作者是更改了注册表解决的&#xff0c;问题不一&#xff0c;大家遇到兼容性问题先按照第7个情况进行设置&#xff0c;大部分人是这个情况&#xff01; 清理缓存和Cookies 按快捷键:ctrlshi…...

Android 蓝牙开发-传输数据

概述 传统蓝牙是通过建立REFCCOM sockect来进行通信的&#xff0c;类似于socket通信&#xff0c;一台设备需要开放服务器套接字并处于listen状态&#xff0c;而另一台设备使用服务器的MAC地址发起连接。连接建立后&#xff0c;服务器和客户端就都通过对BluetoothSocket进行读写…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...