OpenCV相机标定与3D重建(36)计算两幅图像之间基本矩阵(Fundamental Matrix)的函数findFundamentalMat()的使用
- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
从两幅图像中的对应点计算基本矩阵。
cv::findFundamentalMat 是 OpenCV 中用于计算两幅图像之间基本矩阵(Fundamental Matrix)的函数。基本矩阵描述了两个未校准摄像机之间的几何关系,它在计算机视觉中用于立体视觉、运动结构恢复(Structure from Motion, SfM)、视觉里程计等任务。
函数原型
Mat cv::findFundamentalMat
(InputArray points1,InputArray points2,int method,double ransacReprojThreshold,double confidence,int maxIters,OutputArray mask = noArray()
)
参数
- 参数points1:来自第一幅图像的 N 个点数组。点的坐标应该是浮点数(单精度或双精度)。
- 参数points2:第二幅图像的点数组,与 points1 具有相同的大小和格式。
- 参数method:计算基本矩阵的方法。
- FM_7POINT:用于7点算法。N=7
- FM_8POINT:用于8点算法。N≥8
- FM_RANSAC:用于RANSAC算法。N≥8
- FM_LMEDS:用于最小中值法(LMedS)算法。N≥8
- 参数ransacReprojThreshold:仅用于 RANSAC 的参数。它是点到极线的最大距离(以像素为单位),超过该距离的点被认为是离群点,并不用于计算最终的基本矩阵。根据点定位的准确性、图像分辨率和图像噪声,它可以设置为1-3等。
- 参数confidence:仅用于 RANSAC 和 LMedS 方法的参数。它指定了估计矩阵正确的期望置信水平(概率)。
- 参数[out] mask:可选输出掩码。
- 参数maxIters:稳健方法的最大迭代次数。
说明
极几何由以下方程描述:
[ p 2 ; 1 ] T F [ p 1 ; 1 ] = 0 [p_2; 1]^T F [p_1; 1] = 0 [p2;1]TF[p1;1]=0
其中 F 是基本矩阵,p1和p2分别是第一幅和第二幅图像中的对应点。
该函数使用上述列出的四种方法之一来计算基本矩阵,并返回找到的基本矩阵。通常只找到一个矩阵。但在7点算法的情况下,该函数可能返回多达3个解(一个 9×3 矩阵,按顺序存储所有3个矩阵)。
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for( int i = 0; i < point_count; i++ )
{points1[i] = ...;points2[i] = ...;
}
Mat fundamental_matrix =findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
代码示例
#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main( int argc, char** argv )
{// 创建虚拟的匹配点数据(假设我们有8对匹配点)vector< Point2f > points1 = { Point2f( 154.0f, 38.0f ), Point2f( 285.0f, 176.0f ), Point2f( 279.0f, 238.0f ), Point2f( 276.0f, 284.0f ),Point2f( 273.0f, 342.0f ), Point2f( 267.0f, 397.0f ), Point2f( 262.0f, 446.0f ), Point2f( 254.0f, 495.0f ) };vector< Point2f > points2 = { Point2f( 149.0f, 49.0f ), Point2f( 280.0f, 187.0f ), Point2f( 274.0f, 249.0f ), Point2f( 271.0f, 295.0f ),Point2f( 268.0f, 353.0f ), Point2f( 262.0f, 408.0f ), Point2f( 257.0f, 457.0f ), Point2f( 249.0f, 506.0f ) };// 定义输出的基本矩阵和掩码Mat fundamentalMatrix, mask;// 使用 RANSAC 方法计算基本矩阵fundamentalMatrix = findFundamentalMat( points1, points2,FM_RANSAC, // 使用RANSAC方法1.0, // 点到极线的最大重投影误差0.99, // 置信水平2000, // 最大迭代次数mask ); // 输出掩码// 打印结果cout << "Fundamental Matrix:\n" << fundamentalMatrix << endl;// 打印哪些点被认为是内点cout << "Inliers mask:\n";for ( size_t i = 0; i < mask.total(); ++i ){if ( mask.at< uchar >( i ) ){cout << "Point " << i + 1 << " is an inlier." << endl;}else{cout << "Point " << i + 1 << " is an outlier." << endl;}}return 0;
}
运行结果
Fundamental Matrix:
[-3.247212965698772e-20, -0.0008949509319799827, 0.704568065615863;0.0008949509319799836, 3.892534466973619e-19, 0.229349120734492;-0.7144125258676433, -0.2338238753943923, 1]
Inliers mask:
Point 1 is an inlier.
Point 2 is an inlier.
Point 3 is an inlier.
Point 4 is an inlier.
Point 5 is an inlier.
Point 6 is an inlier.
Point 7 is an inlier.
Point 8 is an inlier.
相关文章:
OpenCV相机标定与3D重建(36)计算两幅图像之间基本矩阵(Fundamental Matrix)的函数findFundamentalMat()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 从两幅图像中的对应点计算基本矩阵。 cv::findFundamentalMat 是 OpenCV 中用于计算两幅图像之间基本矩阵(Fundamental Matrix&#…...
ZLG嵌入式笔记 | 电源设计避坑(上)
产品上量后,通常都会有降成需求。多年来,接触过不少产品降成案例,在电源上下刀过猛,引发了产品偶发性问题,带来了很不好的负面影响。本文将对这些案例进行总结,提供电源设计参考,确保产品降成不…...
.NET能做什么?全面解析.NET的应用领域
.NET 是由微软开发的一个开源、跨平台的开发框架。它不仅支持构建各种应用程序,还能运行在不同的操作系统上,包括 Windows、Linux 和 macOS。自从 .NET Core 的推出,.NET 成为了一个现代化的开发平台,能够满足企业和开发者日益多样…...
初始JavaEE篇 —— 网络原理---传输层协议:深入理解UDP/TCP
找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程程(ಥ_ಥ)-CSDN博客 所属专栏:JavaEE 目录 UDP协议 参数解析: 校验和的计算 TCP协议 参数解析: 确认应答机制 超时重传 连接管理 三次握…...
企业如何搭建安全的跨网文件安全交换管理系统
在数字化转型的浪潮中,企业对数据的安全性和流动性提出了前所未有的高要求。特别是在网络隔离的情况下,如何实现跨网的安全、高效的文件交换成为了众多企业迫切需要解决的问题。 这不仅是技术上的挑战,还涉及到企业内部管理流程的优化和安全策…...
2023 年 12 月青少年软编等考 C 语言四级真题解析
目录 T1. 移动路线T2. 公共子序列T3. 田忌赛马T4. 宠物小精灵之收服 T1. 移动路线 此题为 2021 年 12 月四级第一题原题,见 2021 年 12 月青少年软编等考 C 语言四级真题解析中的 T1。 T2. 公共子序列 此题为 2022 年 3 月四级第四题原题,见 2022 年 …...
GDPU Vue前端框架开发 期末赛道出勇士篇(更新ing)
记住,年底陪你跨年的不会仅是方便面跟你的闺蜜,还有孑的笔记。 选择题 1.下列选项用于设置Vue.js页面视图的元素是()。 A. Template B. script C. style D. title 2.下列选项中能够定义Vuejs根实例对象的元素是(&…...
老旧小区用电安全保护装置#限流式防火保护器参数介绍#
摘要 随着居民住宅区用电负荷的增加,用电安全问题日益突出,火灾隐患频繁发生。防火限流式保护器作为一种新型电气安全设备,能够有效预防因电气故障引发的火灾事故。本文介绍了防火限流式保护器的工作原理、技术特点及其在居民住宅区用电系统…...
7.C语言 宏(Macro) 宏定义,宏函数
目录 宏定义 宏函数 1.注释事项 2.注意事项 宏(Macro)用法 常量定义 简单函数实现 类型检查 条件编译 宏函数计算参数个数 宏定义进行类型转换 宏定义进行位操作 宏定义进行断言 总结 宏定义 #include "stdio.h" #include "string.h" #incl…...
4.系统学习-集成学习
集成学习 前言Bias and Variance过拟合(overfitting)与欠拟合(underfitting)集成学习为什么有效?Blending 模型集成Stakcing 模型集成Bagging模型集成Bagging 模型集成算法流程:Boosting模型集成作业 前言 …...
Max AI prompt2:
1,prompt1——总体概览 “请根据以下指导原则撰写文献解读,特别关注作者的研究思路和方法论: 1. 研究背景与目的: 概述文章研究的背景,明确研究的主要目的和研究问题。 2. 研究思路: 详细描述作者如何构建…...
[Unity Shader][图形渲染]【游戏开发】 Shader数学基础8 - 齐次坐标
在计算机图形学中,齐次坐标是一种方便计算和表示几何变换的方式。通过将三维空间中的 33矩阵扩展为 44的形式,可以统一表示平移、旋转、缩放等几何变换操作。在本篇文章中,我们将详细解析齐次坐标的定义及其在图形变换中的应用。 什么是齐次坐标? 齐次坐标的核心思想是通过…...
挑战一个月基本掌握C++(第十二天)了解命名空间,模板,预处理器
一 命名空间 假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,我们在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等。 同样的情况也出现在 …...
python实现根据搜索关键词爬取某宝商品信息
当程序打开淘宝登陆页面后,需要快速手动登录淘宝,如果服务报错,需要重新登录! pip安装库 pip install pyquery pip install selenium pip install openpyxl # 代码说明:代码功能: 基于ChromeDriver爬取tao…...
Posison Distribution
泊松分布 (Poisson Distribution) 泊松分布是概率论中的一个重要离散分布,描述单位时间或单位空间内随机事件发生的次数,假设事件是独立的且平均发生率是已知的。 定义 泊松分布的概率质量函数 (PMF) 为: P ( X k ) λ k e − λ k ! , …...
2024年最新多目标优化算法:多目标麋鹿群优化算法(MOEHO)求解ZDT1-ZDT4,ZDT6及工程应用---盘式制动器设计,提供完整MATLAB代码
一、麋鹿群优化算法 麋鹿群优化算法(Elephant Herding Optimization,EHO)是2024年提出的一种启发式优化算法,它的灵感来自麋鹿群的繁殖过程。麋鹿有两个主要的繁殖季节:发情和产犊。在发情季节,麋鹿群分裂…...
使用Webpack构建微前端应用
英文社区对 Webpack Module Federation 的响应非常热烈,甚至被誉为“A game-changer in JavaScript architecture”,相对而言国内对此热度并不高,这一方面是因为 MF 强依赖于 Webpack5,升级成本有点高;另一方面是国内已…...
Apache RocketMQ 5.1.3安装部署文档
官方文档不好使,可以说是一坨… 关键词:Apache RocketMQ 5.0 JDK 17 废话少说,开整。 1.版本 官网地址,版本如下。 https://rocketmq.apache.org/download2.配置文件 2.1namesrv端口 在ROCKETMQ_HOME/conf下 新增namesrv.pro…...
CMS(Concurrent Mark Sweep)垃圾回收器的具体流程
引言 CMS(Concurrent Mark Sweep)收集器是Java虚拟机中的一款并发收集器,其设计目标是最小化停顿时间,非常适合于对响应时间敏感的应用。与传统的串行或并行收集器不同,CMS能够尽可能地让垃圾收集线程与用户线程同时运…...
【Linux】Socket编程-UDP构建自己的C++服务器
🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 UDP 网络编程 🦋 接口讲解🦋 V1 版本 - echo server🦋 V2 版本 - DictServer🦋 V3 版本 - 简单聊天室 二&a…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
