大模型-ChatGLM2-6B模型部署与微调记录
大模型-ChatGLM2-6B模型部署与微调记录





















模型权重下载:
登录魔塔社区:https://modelscope.cn/models/ZhipuAI/chatglm2-6b
拷贝以下代码执行后,便可快速权重下载到本地
# 备注:最新模型版本要求modelscope >= 1.9.0
# pip install modelscope -U from modelscope.utils.constant import Tasks
from modelscope import Model
from modelscope.pipelines import pipeline
model = Model.from_pretrained('ZhipuAI/chatglm2-6b', device_map='auto', revision='v1.0.12')
pipe = pipeline(task=Tasks.chat, model=model)
inputs = {'text':'你好', 'history': []}
result = pipe(inputs)
inputs = {'text':'介绍下清华大学', 'history': result['history']}
result = pipe(inputs)
print(result)


运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖:
pip install rouge_chinese nltk jieba datasets
下载数据集
ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。
{"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳","summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

参数解释:
PRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=2 torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \--do_train \--train_file /home/data/project/GOOGOSOFT/LLM/ChatGLM2-6B-main/AdvertiseGen/train.json \--validation_file /home/data/project/GOOGOSOFT/LLM/ChatGLM2-6B-main/AdvertiseGen/dev.json \--preprocessing_num_workers 10 \--prompt_column content \--response_column summary \--overwrite_cache \--model_name_or_path /home/data/project/GOOGOSOFT/LLM/ChatGLM2-6B-main/ZhipuAI/chatglm2-6b \--output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \--overwrite_output_dir \--max_source_length 128 \--max_target_length 256 \--per_device_train_batch_size 25 \--per_device_eval_batch_size 25 \--gradient_accumulation_steps 16 \--predict_with_generate \--max_steps 6000 \--logging_steps 10 \--save_steps 1000 \--learning_rate $LR \--pre_seq_len $PRE_SEQ_LEN \--quantization_bit 4

以下是一个 Python 脚本,用于计算 AdvertiseGen 数据集中 content 列的最大长度。此脚本假设数据集是 JSON 格式,文件路径为 AdvertiseGen/train.json。
脚本:计算最大 max_source_length
import json# 数据集文件路径
train_file = "AdvertiseGen/train.json"# 加载数据集
def load_data(file_path):with open(file_path, "r", encoding="utf-8") as f:data = json.load(f)return data# 计算最大输入长度
def calculate_max_source_length(data, column_name="content"):lengths = [len(item[column_name]) for item in data if column_name in item]max_length = max(lengths)print(f"最大输入长度 (max_source_length): {max_length}")return max_length# 主函数
if __name__ == "__main__":# 加载数据data = load_data(train_file)# 计算最大长度max_source_length = calculate_max_source_length(data, column_name="content")
训练:


相关文章:
大模型-ChatGLM2-6B模型部署与微调记录
大模型-ChatGLM2-6B模型部署与微调记录 模型权重下载: 登录魔塔社区:https://modelscope.cn/models/ZhipuAI/chatglm2-6b 拷贝以下代码执行后,便可快速权重下载到本地 # 备注:最新模型版本要求modelscope > 1.9.0 # pip insta…...
RDFS—RDF模型属性扩展解析
目录 前言1. 什么是RDFS?1.1 RDFS的核心概念1.2 RDFS与RDF的区别 2. RDFS的基础概念2.1 类(Class)2.2 属性(Property)2.3 关系(Relation)2.4 定义域(Domain)2.5 值域&…...
pyqt和pycharm环境搭建
安装 python安装: https://www.python.org/downloads/release/python-3913/ python3.9.13 64位(记得勾选Path环境变量) pycharm安装: https://www.jetbrains.com/pycharm/download/?sectionwindows community免费版 换源: pip config se…...
salesforce 控制 Experience Cloud 站点用户可以看到哪些用户
在 Salesforce 的 Experience Cloud 中,您可以通过多种方式控制站点用户(如社区用户)之间的可见性。这包括用户之间的信息可见性以及他们可以访问的其他用户数据。以下是几种方法和设置,用于实现对 Experience Cloud 站点用户可见…...
【玩转OCR】 | 腾讯云智能结构化OCR在多场景的实际应用与体验
文章目录 引言产品简介产品功能产品优势 API调用与场景实践图像增强API调用实例发票API调用实例其他场景 结语相关链接 引言 在数字化信息处理的时代,如何高效、精准地提取和结构化各类文档数据成为了企业和政府部门的重要需求。尤其是在面对海量票据、证件、表单和…...
面试题整理20----什么是蓝绿部署、灰度发布、金丝雀发布他们有什么区别?
面试题整理20----什么是蓝绿部署、灰度发布、金丝雀发布,他们有什么区别? 1. 蓝绿部署2. 灰度发布3. 金丝雀发布4. 滚动更新5. 它们的区别 蓝绿部署、灰度发布、金丝雀发布和滚动更新都是软件部署策略,旨在减少发布新版本时的风险,提高系统的稳定性和用…...
c语言传参数路径太长,导致无法获取参数
把这个 httpd_opts.h 文件里的 这行代码#define LWIP_HTTPD_MAX_CGI_PARAMETERS 改大根据需要改就可以 /* The maximum number of parameters that the CGI handler can be sent. */ #if !defined LWIP_HTTPD_MAX_CGI_PARAMETERS || defined __DOXYGEN__ #define LWIP_HTTP…...
React性能优化:构建更高效的应用
在现代前端开发中,React已经成为构建复杂、交互频繁应用的首选框架。然而,随着应用规模的扩大和功能的丰富,组件的频繁重渲染可能会成为性能瓶颈,影响用户体验。为了提升React应用的性能,开发者需要掌握一系列性能优化技巧和工具。本文将详细介绍React性能优化的各个方面,…...
python+PyMuPDF库:(一)创建pdf文件及内容读取和写入
目录 文档操作 打开文档 获取文档信息 删除页 复制页 移动页 选择重构合并 保存关闭 页对象操作 内容读取 获取页对象的字体样式 插入文本标签 插入文本内容 字体设置 insert_text添加文本 insert_textbox添加文本 插入图片 获取页面注释、链接、表单字段 …...
vue3配置测试环境、开发环境、生产环境
第一步:在src同级新建 .env.production 、.env.test 、.env.development文件 第二步:在文件中配置开发环境、生产环境、测试环境 // 开发环境 .env.developmentNODE_ENV developmentVUE_APP_MODE development outputDir dist_dev // 打出包的名称VUE_…...
Jsonlizer,一个把C++各类数据转成 Json 结构体的玩意儿
这段时间突发奇想,觉得可以弄一个Json和C各种数据类型互转的工具,因为Json在进行数据储存的时候,有一些先天的优势,传统的C的序列化方式是将数据序列化到流数据里面,而流数据是典型的串行结构(或则说是一维…...
Qt仿音乐播放器:设置窗口、部件属性
// 设置窗口标志 this->setWindowFlag(Qt::FramelessWindowHint); //此设置将窗口设置成无边框模式//设置窗口背景透明 this->setAttribute(Qt::WA_TranslucentBackground,true); attribute:属性 Translucent:半透明 Qt::WA_TranslucentBackgro…...
使用 .NET 6 或 .NET 8 上传大文件
如果您正在使用 .NET 6,并且它拒绝上传大文件,那么本文适合您。 我分享了一些处理大文件时需要牢记的建议,以及如何根据我们的需求配置我们的服务,并提供无限制的服务。 本文与 https://blog.csdn.net/hefeng_aspnet/arti…...
基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测
本文采用特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测 基于BILSTM(双向长短期记忆网络)、随机森林回归和ARIMA(自回归积分滑动平均&am…...
攻防世界 PHP2
开启场景 访问 /index.php,页面无变化 访问 /index.phps index.php 和 index.phps 文件之间的主要区别在于它们的文件扩展名。 index.php:这是一个标准的 PHP 文件,通常用于编写 PHP 代码。当用户访问 index.php 文件时,Web 服务器…...
主板idyy
import java.math.BigInteger; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public class MachineCodeGenerator { // 获取主板ID(这需要根据操作系统具体实现) private static String getMotherboardID() {…...
轻松实现向量搜索:探索 Elastic-Embedding-Searcher 项目
随着人工智能和机器学习技术的飞速发展,向量搜索已成为数据检索的重要方式。尤其是在处理大规模文本数据时,传统的基于关键词的检索方式已经难以满足需求。为了优化检索性能并提升搜索精度,向量搜索成为了更加高效的解决方案。而在这一领域&a…...
flask后端开发(3):html模板渲染
目录 渲染模板html模板获取路由参数 gitcode地址: https://gitcode.com/qq_43920838/flask_project.git 渲染模板 这样就能够通过html文件来渲染前端,而不是通过return了 html模板获取路由参数...
逻辑控制语句
一、逻辑控制语句 条件判断 if循环 for、while 二、条件判断 if 1、语法 if 条件:条件为真的操作条件为真的操作 else:条件为假的操作条件为假的操作 data_01 int(input("数字: "))if data_01 > 10:print("ok!!!")print("正确!!!")prin…...
[OpenGL]使用 Compute Shader 实现矩阵点乘
一、简介 本文介绍了如何使用 OpenGL 中的 compute shader 进行矩阵相乘的并行运算。代码目标是,输入两个大小为 10*10 的矩阵 A 和 B,计算 A*B 的结果并存储到矩阵 C 中。 二、代码 0. 代码逻辑 1. 初始化 glfw, glad, 窗口 2. 初始化 compute shad…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
