当前位置: 首页 > news >正文

概率统计与随机过程--作业5

一、推导题

二、计算题

1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型:

广告费用(万元)x

2

5

6

7

22

25

28

30

22

18

销售量(个)    y

75

90

148

183

242

263

278

318

256

200

解:

(1)绘制的散点图和回归线如下图所示:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号#数据
data=np.array([[2,5,6,7,22,25,28,30,22,18],[75, 90,148,183,242,263,278,318,256,200]])x=data[0]
y=data[1]
plt.scatter(x, y,  c='r',marker='o',label='销售量') #散点图
linreg = LinearRegression()#线性回归
linreg.fit(x.reshape(-1,1),y) #拟合,x要转换为列向量
y_pre=linreg.predict(x.reshape(-1,1))
plt.plot(x,y_pre,c='b') #回归线
s='y='
for i in range(len(linreg.coef_)):if(linreg.coef_[i]>=0 and i>0):s=s+'+'+str(round(linreg.coef_[i],3))+'x'+str(i)else:s=s+str(round(linreg.coef_[i],3))+'x'+str(i)
if(linreg.intercept_>=0):s=s+'+'+str(round(linreg.intercept_,3))
else:s=s+str(round(linreg.intercept_,3))
plt.title('太阳镜销售和广告费用之间的关系')
plt.xlabel('x-广告费用(万元)')
plt.ylabel('y-销售量(个)')
plt.legend()
plt.show()
a_i=linreg.intercept_  # a 的估计值
b_i=linreg.coef_[0]    # a 的估计值
print("线性回归方程为:",s)# 计算统计量
Sxx=0
Syy=0
Sxy=0
SSe=Qe=0n=data.shape[1]
x_=x.mean()
y_=y.mean()
for i in range(n):t=(x[i]-x_)**2Sxx=Sxx+tt=(y[i]-y_)**2Syy=Syy+tt=(y[i]-y_)*(x[i]-x_)Sxy=Sxy+tt=(y[i]-y_pre[i])**2SSe=SSe+t
# b的估计值 b_i=Sxy/Sxx
Qe=Syy-b_i*Sxy # Qe==SSe
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
print("主要统计参数:Sxx={:.3f},Syy={:.3f},Sxy={:.3f},SSe=Qe={:.3f},Sigma={:.3f}".format(Sxx,Syy,Sxy,SSe,sigma_i))
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
x_i=35 #输入的x值
y_i=b_i*x_i+a_i #相应的预测值
t_c=2.306 # t_a/2的临界值,a=0.05
interval=np.sqrt((1+1/n+(x_i-x_)**2/Sxx)*sigma**2)*t_c
print("对应x={:.3f}的Y的预测值为{:.3f},置信度为95%的预测区间为:({:.3f},{:.3f})".format(x_i,y_i,y_i-interval,y_i+interval))

 2. 对鲍鱼数据集(abalone.txt)进行向前逐步回归,将“Length”列值全设置为1,给出优化后属性列表(参加ppt中【例5-9】,【例5-10】及相关代码)。

答案: final formula is Age~Rings+Viscera+Height+Shucked+Shell+Whole

import numpy as np
import pandas as pd
import statsmodels.api as sm #最小二乘
from statsmodels.formula.api import ols #加载ols模型
# 数据准备
#读取鲍鱼数据集
aba = pd.read_table('abalone.txt',sep=',', names=['Length',	'Diam',	'Height',	'Whole'	,'Shucked',	'Viscera',	'Shell',	'Rings','Age'
],header = None)#该数据集源于UCI,记录了鲍⻥的⽣物属性,⽬标字段是该⽣物的年龄
print(aba.shape)
aba.iloc[:, 0] = 1 # 把类型列置1
print(aba.head())print(aba.shape) #查看数据集大小
print(aba.head(5)) #查看前10行数据
print(aba.columns)#定义向前逐步回归函数
def forward_select(data,target):variate=set(data.columns)  #将字段名转换成字典类型variate.remove(target)  #去掉因变量的字段名selected=[]current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)#循环筛选变量while variate:aic_with_variate=[]for candidate in variate:  #逐个遍历自变量formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表aic_with_variate.sort(reverse=True)  #降序排序aic值best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量if current_score>best_new_score:  #如果目前的aic值大于最好的aic值variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了selected.append(best_candidate)  #将此自变量作为加进模型中的自变量current_score=best_new_score  #最新的分数等于最好的分数print("aic is {},continuing!".format(current_score))  #输出最小的aic值else:print("for selection over!")breakformula="{}~{}".format(target,"+".join(selected))  #最终的模型式子print("final formula is {}".format(formula))model=ols(formula=formula,data=data).fit()return(model)
# 对数据进行前向逐步回归
forward_select(data=aba,target="Age")

相关文章:

概率统计与随机过程--作业5

一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型: 广告费用(万元)x 2 5 6 7 22 25 28 30 22 18 销售量(个&#xf…...

“802.11g”,“802.11n”,“802.11ac”,“802.11ax”

802.11g、802.11n、802.11ac、802.11ax都是IEEE制定的无线局域网(WLAN)标准,它们各自具有不同的特点和性能。以下是对这四个标准的详细介绍: 1. 802.11g 定义:802.11g是IEEE制定的一种无线局域网标准,它提…...

Kubernetes 常用的网络插件

上篇内容跟大家简单聊了k8s网络模型原理。分别围绕着容器、Pod、Service、网络策略等展开了详细的讲解。这次想跟大家聊聊k8s的CNI网络插件。 CNI 是 Kubernetes 网络模型的核心组件,它是一个插件接口,允许用户选择和配置网络插件来管理 Pod 的网络。CN…...

Retrofit和rxjava 实现窜行请求,并行请求,循环多次请求,递归请求,错误重试

在使用 Retrofit 和 RxJava 时,可以通过多种方式实现多次请求,比如串行请求、并行请求、依赖请求等。以下是一些常见的实现方式: 1. 串行请求(依赖关系) 一个请求的结果作为另一个请求的输入,可以用 flat…...

2025年度好用便签推荐,电脑桌面便签app分享

在快节奏的现代生活中,高效的时间管理和任务规划变得尤为重要。一款好用的便签软件不仅能帮助我们记录灵感、待办事项,还能极大地提升我们的工作效率。 在众多电脑桌面便签中,好用便签以其出色的桌面便签功能脱颖而出,备受用户青…...

【论文解读】Arbitrary-steps Image Super-resolution via Diffusion Inversion

级别:arXiv Computer Vision and Pattern Recognition(2024)作者:Zongsheng Yue,Kang Liao,Chen Change Loy时间:2024论文链接:Arbitrary-steps Image Super-resolution via Diffusion Inversion摘要 技术概述:该技术基于扩散反转,通过设计部分噪声预测策略来构建扩散…...

kkFileView集成springboot:使用自定义预览接口(非minio预览接口),发现无法预览资源

目录 1、背景2、原因分析3、解决办法 1、背景 按照项目验收要求,需要对minio中存储的数据进行加密 之前提供给kkFileView的预览地址都是获取的minio预览地址 由于minio中的资源进行了加密处理,所以我们自定义预览接口(进行解密操作&#xff…...

被裁20240927 --- 嵌入式硬件开发 STM32篇

人很容易原谅别人的错误但很难原谅别人的正确 1. 文档、手册、指南、资源2. MCU 结构3. MCU 和 MPU 的区别4. 一些概念什么是看门狗 ?什么是 DMA ?什么是晶振 ?什么是片内外设?软件协议、硬件协议、数据协议、通讯协议、通信协议u…...

留学生交流互动系统|Java|SSM|VUE| 前后端分离

【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...

C/C++ 数据结构与算法【图】 图+邻接矩阵+邻接表+DFS+BFS+最小生成树+最短路径+拓扑排序详细解析【日常学习,考研必备】带图+详细代码

一、图的定义 1)无向图,有向图,完全图 2)稀疏图,稠密图,网,邻接,关联 3)度 4)路径 5)连通图 6)权与网 7)子图 8&#xff0…...

Linux实验报告7-文件管理

目录 一:实验目的 二:实验内容 (1)查看/etc/inittab文件的权限属性,并指出该文件的所有者以及文件所属组群。 (2)新建文件test,设置文件权限为r--r-----。 (3)新建文件test2,设系统中有用户study和用户组studygr…...

RJ45网口模块设计

1、以太网概述及RJ45实物 2、常用网口信号介绍 3、RJ45网口布局布线要点分析 4、总结 1、变压器下面需要进行挖空处理,以免底下的铜引入干扰,(将多边形挖空区域的所在层设置为Multi-Layer多层) 2、为了更直观的看一个类中线的长…...

电子电器架构 --- 智能座舱HUD技术革新

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源&…...

嵌入式开发中的机器人表情绘制

机器人的表情有两种,一种是贴图,一钟是调用图形API自绘。 贴图效果相对比较好,在存储空间大的情况下是可以采用的。 自绘比较麻烦,但在资源和空缺少的情况下,也是很有用的。而且自绘很容易通过调整参数加入随机效果&…...

orm01

静态文件处理 静态文件:如:图片、音频、视频、css、js等静态文件的相关配置也在 项目名/项目名/settings.py 文件中进行配置 - 配置静态文件的访问路径STATIC_URL- 功能:通过哪个 url 地址找静态文件- 默认配置:STATIC_URL /sta…...

Maven 测试和单元测试介绍

一、测试介绍 二、单元测试 1&#xff09;介绍 2&#xff09;快速入门 添加依赖 <dependencies><!-- junit依赖 --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>5.9…...

Postman接口测试03|执行接口测试、全局变量和环境变量、接口关联、动态参数、断言

目录 七、Postman 1、安装 2、postman的界面介绍 八、Postman执行接口测试 1、请求页签 3、响应页签 九、Postman的环境变量和全局变量 1、创建环境变量和全局变量可以解决的问题 2、postman中的操作-全局变量 1️⃣手动设置 2️⃣代码设置 3️⃣界面获取 4️⃣代…...

UE5 丧尸类杂兵的简单AI

A、思路 1、关卡初始化时&#xff0c;自动产生随机巡逻点&#xff0c;小兵到达后&#xff0c;去另一个随机巡逻点。 2、加入视力&#xff0c;发现主角后&#xff0c;不再巡逻&#xff0c;而开始追击主角并攻击。条件循环。 3、加入听力。主角的奔跑与射击会产生噪音&#xf…...

Linux字符设备驱动开发的三种方式(分析+对比+示例)

文章目录 一. 字符设备的驱动方法二. 三种方法的对比三. 开发环境四. 代码示例1. 传统设备驱动模型2. 总线设备驱动模型3. 设备树驱动模型 五. 相关链接 一. 字符设备的驱动方法 字符设备驱动 是指在I/O传输过程中以字节流进行读写操作的设备。典型的如LCD、蜂鸣器、SPI、触摸屏…...

C++设计模式之行为型模式概述,它们的目的与特点

行为型设计模式需要解决的问题 行为型设计模式主要关注对象之间的责任分配和交互。它们解决的问题包括&#xff1a; 对象之间的通信&#xff1a;如何让对象之间高效地通信&#xff0c;同时保持松耦合。算法的封装与复用&#xff1a;如何将算法或行为封装起来&#xff0c;使其…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...