当前位置: 首页 > news >正文

概率统计与随机过程--作业5

一、推导题

二、计算题

1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型:

广告费用(万元)x

2

5

6

7

22

25

28

30

22

18

销售量(个)    y

75

90

148

183

242

263

278

318

256

200

解:

(1)绘制的散点图和回归线如下图所示:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号#数据
data=np.array([[2,5,6,7,22,25,28,30,22,18],[75, 90,148,183,242,263,278,318,256,200]])x=data[0]
y=data[1]
plt.scatter(x, y,  c='r',marker='o',label='销售量') #散点图
linreg = LinearRegression()#线性回归
linreg.fit(x.reshape(-1,1),y) #拟合,x要转换为列向量
y_pre=linreg.predict(x.reshape(-1,1))
plt.plot(x,y_pre,c='b') #回归线
s='y='
for i in range(len(linreg.coef_)):if(linreg.coef_[i]>=0 and i>0):s=s+'+'+str(round(linreg.coef_[i],3))+'x'+str(i)else:s=s+str(round(linreg.coef_[i],3))+'x'+str(i)
if(linreg.intercept_>=0):s=s+'+'+str(round(linreg.intercept_,3))
else:s=s+str(round(linreg.intercept_,3))
plt.title('太阳镜销售和广告费用之间的关系')
plt.xlabel('x-广告费用(万元)')
plt.ylabel('y-销售量(个)')
plt.legend()
plt.show()
a_i=linreg.intercept_  # a 的估计值
b_i=linreg.coef_[0]    # a 的估计值
print("线性回归方程为:",s)# 计算统计量
Sxx=0
Syy=0
Sxy=0
SSe=Qe=0n=data.shape[1]
x_=x.mean()
y_=y.mean()
for i in range(n):t=(x[i]-x_)**2Sxx=Sxx+tt=(y[i]-y_)**2Syy=Syy+tt=(y[i]-y_)*(x[i]-x_)Sxy=Sxy+tt=(y[i]-y_pre[i])**2SSe=SSe+t
# b的估计值 b_i=Sxy/Sxx
Qe=Syy-b_i*Sxy # Qe==SSe
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
print("主要统计参数:Sxx={:.3f},Syy={:.3f},Sxy={:.3f},SSe=Qe={:.3f},Sigma={:.3f}".format(Sxx,Syy,Sxy,SSe,sigma_i))
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
x_i=35 #输入的x值
y_i=b_i*x_i+a_i #相应的预测值
t_c=2.306 # t_a/2的临界值,a=0.05
interval=np.sqrt((1+1/n+(x_i-x_)**2/Sxx)*sigma**2)*t_c
print("对应x={:.3f}的Y的预测值为{:.3f},置信度为95%的预测区间为:({:.3f},{:.3f})".format(x_i,y_i,y_i-interval,y_i+interval))

 2. 对鲍鱼数据集(abalone.txt)进行向前逐步回归,将“Length”列值全设置为1,给出优化后属性列表(参加ppt中【例5-9】,【例5-10】及相关代码)。

答案: final formula is Age~Rings+Viscera+Height+Shucked+Shell+Whole

import numpy as np
import pandas as pd
import statsmodels.api as sm #最小二乘
from statsmodels.formula.api import ols #加载ols模型
# 数据准备
#读取鲍鱼数据集
aba = pd.read_table('abalone.txt',sep=',', names=['Length',	'Diam',	'Height',	'Whole'	,'Shucked',	'Viscera',	'Shell',	'Rings','Age'
],header = None)#该数据集源于UCI,记录了鲍⻥的⽣物属性,⽬标字段是该⽣物的年龄
print(aba.shape)
aba.iloc[:, 0] = 1 # 把类型列置1
print(aba.head())print(aba.shape) #查看数据集大小
print(aba.head(5)) #查看前10行数据
print(aba.columns)#定义向前逐步回归函数
def forward_select(data,target):variate=set(data.columns)  #将字段名转换成字典类型variate.remove(target)  #去掉因变量的字段名selected=[]current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)#循环筛选变量while variate:aic_with_variate=[]for candidate in variate:  #逐个遍历自变量formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表aic_with_variate.sort(reverse=True)  #降序排序aic值best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量if current_score>best_new_score:  #如果目前的aic值大于最好的aic值variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了selected.append(best_candidate)  #将此自变量作为加进模型中的自变量current_score=best_new_score  #最新的分数等于最好的分数print("aic is {},continuing!".format(current_score))  #输出最小的aic值else:print("for selection over!")breakformula="{}~{}".format(target,"+".join(selected))  #最终的模型式子print("final formula is {}".format(formula))model=ols(formula=formula,data=data).fit()return(model)
# 对数据进行前向逐步回归
forward_select(data=aba,target="Age")

相关文章:

概率统计与随机过程--作业5

一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型: 广告费用(万元)x 2 5 6 7 22 25 28 30 22 18 销售量(个&#xf…...

“802.11g”,“802.11n”,“802.11ac”,“802.11ax”

802.11g、802.11n、802.11ac、802.11ax都是IEEE制定的无线局域网(WLAN)标准,它们各自具有不同的特点和性能。以下是对这四个标准的详细介绍: 1. 802.11g 定义:802.11g是IEEE制定的一种无线局域网标准,它提…...

Kubernetes 常用的网络插件

上篇内容跟大家简单聊了k8s网络模型原理。分别围绕着容器、Pod、Service、网络策略等展开了详细的讲解。这次想跟大家聊聊k8s的CNI网络插件。 CNI 是 Kubernetes 网络模型的核心组件,它是一个插件接口,允许用户选择和配置网络插件来管理 Pod 的网络。CN…...

Retrofit和rxjava 实现窜行请求,并行请求,循环多次请求,递归请求,错误重试

在使用 Retrofit 和 RxJava 时,可以通过多种方式实现多次请求,比如串行请求、并行请求、依赖请求等。以下是一些常见的实现方式: 1. 串行请求(依赖关系) 一个请求的结果作为另一个请求的输入,可以用 flat…...

2025年度好用便签推荐,电脑桌面便签app分享

在快节奏的现代生活中,高效的时间管理和任务规划变得尤为重要。一款好用的便签软件不仅能帮助我们记录灵感、待办事项,还能极大地提升我们的工作效率。 在众多电脑桌面便签中,好用便签以其出色的桌面便签功能脱颖而出,备受用户青…...

【论文解读】Arbitrary-steps Image Super-resolution via Diffusion Inversion

级别:arXiv Computer Vision and Pattern Recognition(2024)作者:Zongsheng Yue,Kang Liao,Chen Change Loy时间:2024论文链接:Arbitrary-steps Image Super-resolution via Diffusion Inversion摘要 技术概述:该技术基于扩散反转,通过设计部分噪声预测策略来构建扩散…...

kkFileView集成springboot:使用自定义预览接口(非minio预览接口),发现无法预览资源

目录 1、背景2、原因分析3、解决办法 1、背景 按照项目验收要求,需要对minio中存储的数据进行加密 之前提供给kkFileView的预览地址都是获取的minio预览地址 由于minio中的资源进行了加密处理,所以我们自定义预览接口(进行解密操作&#xff…...

被裁20240927 --- 嵌入式硬件开发 STM32篇

人很容易原谅别人的错误但很难原谅别人的正确 1. 文档、手册、指南、资源2. MCU 结构3. MCU 和 MPU 的区别4. 一些概念什么是看门狗 ?什么是 DMA ?什么是晶振 ?什么是片内外设?软件协议、硬件协议、数据协议、通讯协议、通信协议u…...

留学生交流互动系统|Java|SSM|VUE| 前后端分离

【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...

C/C++ 数据结构与算法【图】 图+邻接矩阵+邻接表+DFS+BFS+最小生成树+最短路径+拓扑排序详细解析【日常学习,考研必备】带图+详细代码

一、图的定义 1)无向图,有向图,完全图 2)稀疏图,稠密图,网,邻接,关联 3)度 4)路径 5)连通图 6)权与网 7)子图 8&#xff0…...

Linux实验报告7-文件管理

目录 一:实验目的 二:实验内容 (1)查看/etc/inittab文件的权限属性,并指出该文件的所有者以及文件所属组群。 (2)新建文件test,设置文件权限为r--r-----。 (3)新建文件test2,设系统中有用户study和用户组studygr…...

RJ45网口模块设计

1、以太网概述及RJ45实物 2、常用网口信号介绍 3、RJ45网口布局布线要点分析 4、总结 1、变压器下面需要进行挖空处理,以免底下的铜引入干扰,(将多边形挖空区域的所在层设置为Multi-Layer多层) 2、为了更直观的看一个类中线的长…...

电子电器架构 --- 智能座舱HUD技术革新

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源&…...

嵌入式开发中的机器人表情绘制

机器人的表情有两种,一种是贴图,一钟是调用图形API自绘。 贴图效果相对比较好,在存储空间大的情况下是可以采用的。 自绘比较麻烦,但在资源和空缺少的情况下,也是很有用的。而且自绘很容易通过调整参数加入随机效果&…...

orm01

静态文件处理 静态文件:如:图片、音频、视频、css、js等静态文件的相关配置也在 项目名/项目名/settings.py 文件中进行配置 - 配置静态文件的访问路径STATIC_URL- 功能:通过哪个 url 地址找静态文件- 默认配置:STATIC_URL /sta…...

Maven 测试和单元测试介绍

一、测试介绍 二、单元测试 1&#xff09;介绍 2&#xff09;快速入门 添加依赖 <dependencies><!-- junit依赖 --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>5.9…...

Postman接口测试03|执行接口测试、全局变量和环境变量、接口关联、动态参数、断言

目录 七、Postman 1、安装 2、postman的界面介绍 八、Postman执行接口测试 1、请求页签 3、响应页签 九、Postman的环境变量和全局变量 1、创建环境变量和全局变量可以解决的问题 2、postman中的操作-全局变量 1️⃣手动设置 2️⃣代码设置 3️⃣界面获取 4️⃣代…...

UE5 丧尸类杂兵的简单AI

A、思路 1、关卡初始化时&#xff0c;自动产生随机巡逻点&#xff0c;小兵到达后&#xff0c;去另一个随机巡逻点。 2、加入视力&#xff0c;发现主角后&#xff0c;不再巡逻&#xff0c;而开始追击主角并攻击。条件循环。 3、加入听力。主角的奔跑与射击会产生噪音&#xf…...

Linux字符设备驱动开发的三种方式(分析+对比+示例)

文章目录 一. 字符设备的驱动方法二. 三种方法的对比三. 开发环境四. 代码示例1. 传统设备驱动模型2. 总线设备驱动模型3. 设备树驱动模型 五. 相关链接 一. 字符设备的驱动方法 字符设备驱动 是指在I/O传输过程中以字节流进行读写操作的设备。典型的如LCD、蜂鸣器、SPI、触摸屏…...

C++设计模式之行为型模式概述,它们的目的与特点

行为型设计模式需要解决的问题 行为型设计模式主要关注对象之间的责任分配和交互。它们解决的问题包括&#xff1a; 对象之间的通信&#xff1a;如何让对象之间高效地通信&#xff0c;同时保持松耦合。算法的封装与复用&#xff1a;如何将算法或行为封装起来&#xff0c;使其…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...