【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄
介绍
本人机器学习小白,通过语言大模型+百度进行搜索,磕磕绊绊的实现了初步效果,能有一些锁头效果,但识别速度不是非常快,且没有做敌友区分,效果不是非常的理想,但在4399小游戏中爽一下还是可以的!。
思路
1.先通过yolov5实现对电脑屏幕的实时检测,只获取中心部分画面,减少其他人物的识别,提高识别速度
2.筛选只留下【person】的人物框
3.获取第一个框的坐标点,并计算出框的中上坐标点,以此粗略的当作人物的头部
4.操作鼠标定位的中心点
5.模拟鼠标左键点击,完成射击
代码
1.先下载github上yolov5的项目
git clone https://github.com/ultralytics/yolov5.git
2.在项目中添加test.py
import timeimport cv2
import mediapipe as mp
import pyautogui
import pydirectinput
import numpy as np
import tkinter as tk
import torch
import warningswarnings.filterwarnings("ignore", category=FutureWarning, module="torch.cuda.amp.autocast")root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
root.destroy()# 获取屏幕的尺寸
crop_width = 500
crop_height = 500
start_x = (screen_width - crop_width) // 2
start_y = (screen_height - crop_height) // 2# 加载预训练模型
model = torch.hub.load('./', 'custom', path='yolov5s.pt', source='local')def readScreen():# 初始化MediaPipe姿态检测对象mp_pose = mp.solutions.posepose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, min_tracking_confidence=0.5)while True:# 使用pyautogui进行屏幕截图,指定截图区域为屏幕左半边#screenshot = pyautogui.screenshot(region=(start_x, start_y, 500, 500))screenshot = pyautogui.screenshot(region=(start_x, start_y, crop_width, crop_height))# 将截图转换为OpenCV格式(BGR格式),因为mediapipe处理的图像通常为RGB格式,后续会进行转换frame = cv2.cvtColor(np.array(screenshot), cv2.COLOR_RGB2BGR)# 获取期望的缩小后显示窗口的宽度和高度(这里设置为原屏幕宽高的一定比例,可根据需求调整)display_width = int(screen_width * 0.4) # 示例,可修改比例display_height = int(screen_height * 0.4) # 示例,可修改比例# 计算缩放比例,保持图像宽高比进行缩放scale_width = display_width / frame.shape[1]scale_height = display_height / frame.shape[0]scale = min(scale_width, scale_height)# 缩放图像resized_frame = cv2.resize(frame, (int(frame.shape[1] * scale), int(frame.shape[0] * scale)))# 进行人体姿态检测# 定义锐化卷积核kernel = np.array([[-1, -1, -1],[-1, 9, -1],[-1, -1, -1]])# 假设frame是已经获取的游戏截图(BGR格式)sharpened_frame = cv2.filter2D(frame, -1, kernel)#results = pose.process(sharpened_frame)# 进行推理results = model(sharpened_frame)# 解析结果detections = results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, confidence, class]# 在截图上绘制检测结果for detection in detections:x1, y1, x2, y2, confidence, cls = detectionclass_name = model.names[int(cls)]if class_name == 'person':# 根据之前计算的缩放比例scale,对坐标值进行缩放调整scaled_x1 = int(x1 * scale)scaled_y1 = int(y1 * scale)scaled_x2 = int(x2 * scale)scaled_y2 = int(y2 * scale)# 计算矩形框中心点坐标(在缩放后的图像坐标体系下)center_x = (scaled_x1 + scaled_x2) // 2center_y = (scaled_y1 + scaled_y2) // 2offset_y = (scaled_y2 - scaled_y1) / 4# 将缩放后的坐标转换回原始屏幕坐标体系(考虑截图区域的偏移)screen_center_x = start_x + (center_x / scale)screen_center_y = start_y + (center_y / scale) - offset_y# 使用pyautogui将鼠标移动到计算出的屏幕坐标位置try:#pydirectinput.click(button='left', x=int(screen_center_x), y=int(screen_center_y))pydirectinput.moveTo(int(screen_center_x), int(screen_center_y+10))click_left_button()except pyautogui.FailSafeException:print("鼠标移动超出安全范围,可能无法正确定位。")except Exception as e:print(f"鼠标移动出现其他错误: {e}")#cv2.rectangle(resized_frame, (scaled_x1, scaled_y1), (scaled_x2, scaled_y2), (0, 255, 0), 2)#cv2.putText(resized_frame, f"{class_name}: {confidence:.2f}", (scaled_x1, scaled_y1 - 10),#cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)break#show(resized_frame)# 显示视频帧#cv2.imshow('Frame', frame)# 将处理后的帧写入输出视频文件if cv2.waitKey(1) & 0xFF == 27: # 按ESC键退出breakcv2.destroyAllWindows()pose.close()def click_left_button():# 执行点击鼠标左键的操作print("点击鼠标")pydirectinput.mouseDown()time.sleep(0.05)pydirectinput.mouseUp()def show(frame):# 创建一个窗口,并设置为可调整大小和始终在最前端cv2.namedWindow('Pose Recognition Result', cv2.WINDOW_NORMAL | cv2.WINDOW_FREERATIO | cv2.WINDOW_GUI_EXPANDED | cv2.WINDOW_AUTOSIZE)cv2.setWindowProperty('Pose Recognition Result', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)cv2.setWindowProperty('Pose Recognition Result', cv2.WND_PROP_TOPMOST, 1)cv2.imshow('Pose Recognition Result', frame)if __name__ == '__main__':readScreen()
效果图
后记
测试是使用的 4399 小游戏中的【火线精英】这个游戏,需要在360打开,还需要安装flush插件,然后打的基本也是人机,在满足这些前提下,可以爽一下,哈哈哈
相关文章:

【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄
介绍 本人机器学习小白,通过语言大模型百度进行搜索,磕磕绊绊的实现了初步效果,能有一些锁头效果,但识别速度不是非常快,且没有做敌友区分,效果不是非常的理想,但在4399小游戏中爽一下还是可以…...

概率统计与随机过程--作业5
一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型: 广告费用(万元)x 2 5 6 7 22 25 28 30 22 18 销售量(个…...
“802.11g”,“802.11n”,“802.11ac”,“802.11ax”
802.11g、802.11n、802.11ac、802.11ax都是IEEE制定的无线局域网(WLAN)标准,它们各自具有不同的特点和性能。以下是对这四个标准的详细介绍: 1. 802.11g 定义:802.11g是IEEE制定的一种无线局域网标准,它提…...

Kubernetes 常用的网络插件
上篇内容跟大家简单聊了k8s网络模型原理。分别围绕着容器、Pod、Service、网络策略等展开了详细的讲解。这次想跟大家聊聊k8s的CNI网络插件。 CNI 是 Kubernetes 网络模型的核心组件,它是一个插件接口,允许用户选择和配置网络插件来管理 Pod 的网络。CN…...
Retrofit和rxjava 实现窜行请求,并行请求,循环多次请求,递归请求,错误重试
在使用 Retrofit 和 RxJava 时,可以通过多种方式实现多次请求,比如串行请求、并行请求、依赖请求等。以下是一些常见的实现方式: 1. 串行请求(依赖关系) 一个请求的结果作为另一个请求的输入,可以用 flat…...

2025年度好用便签推荐,电脑桌面便签app分享
在快节奏的现代生活中,高效的时间管理和任务规划变得尤为重要。一款好用的便签软件不仅能帮助我们记录灵感、待办事项,还能极大地提升我们的工作效率。 在众多电脑桌面便签中,好用便签以其出色的桌面便签功能脱颖而出,备受用户青…...
【论文解读】Arbitrary-steps Image Super-resolution via Diffusion Inversion
级别:arXiv Computer Vision and Pattern Recognition(2024)作者:Zongsheng Yue,Kang Liao,Chen Change Loy时间:2024论文链接:Arbitrary-steps Image Super-resolution via Diffusion Inversion摘要 技术概述:该技术基于扩散反转,通过设计部分噪声预测策略来构建扩散…...

kkFileView集成springboot:使用自定义预览接口(非minio预览接口),发现无法预览资源
目录 1、背景2、原因分析3、解决办法 1、背景 按照项目验收要求,需要对minio中存储的数据进行加密 之前提供给kkFileView的预览地址都是获取的minio预览地址 由于minio中的资源进行了加密处理,所以我们自定义预览接口(进行解密操作ÿ…...

被裁20240927 --- 嵌入式硬件开发 STM32篇
人很容易原谅别人的错误但很难原谅别人的正确 1. 文档、手册、指南、资源2. MCU 结构3. MCU 和 MPU 的区别4. 一些概念什么是看门狗 ?什么是 DMA ?什么是晶振 ?什么是片内外设?软件协议、硬件协议、数据协议、通讯协议、通信协议u…...

留学生交流互动系统|Java|SSM|VUE| 前后端分离
【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...

C/C++ 数据结构与算法【图】 图+邻接矩阵+邻接表+DFS+BFS+最小生成树+最短路径+拓扑排序详细解析【日常学习,考研必备】带图+详细代码
一、图的定义 1)无向图,有向图,完全图 2)稀疏图,稠密图,网,邻接,关联 3)度 4)路径 5)连通图 6)权与网 7)子图 8࿰…...

Linux实验报告7-文件管理
目录 一:实验目的 二:实验内容 (1)查看/etc/inittab文件的权限属性,并指出该文件的所有者以及文件所属组群。 (2)新建文件test,设置文件权限为r--r-----。 (3)新建文件test2,设系统中有用户study和用户组studygr…...

RJ45网口模块设计
1、以太网概述及RJ45实物 2、常用网口信号介绍 3、RJ45网口布局布线要点分析 4、总结 1、变压器下面需要进行挖空处理,以免底下的铜引入干扰,(将多边形挖空区域的所在层设置为Multi-Layer多层) 2、为了更直观的看一个类中线的长…...

电子电器架构 --- 智能座舱HUD技术革新
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源&…...

嵌入式开发中的机器人表情绘制
机器人的表情有两种,一种是贴图,一钟是调用图形API自绘。 贴图效果相对比较好,在存储空间大的情况下是可以采用的。 自绘比较麻烦,但在资源和空缺少的情况下,也是很有用的。而且自绘很容易通过调整参数加入随机效果&…...

orm01
静态文件处理 静态文件:如:图片、音频、视频、css、js等静态文件的相关配置也在 项目名/项目名/settings.py 文件中进行配置 - 配置静态文件的访问路径STATIC_URL- 功能:通过哪个 url 地址找静态文件- 默认配置:STATIC_URL /sta…...

Maven 测试和单元测试介绍
一、测试介绍 二、单元测试 1)介绍 2)快速入门 添加依赖 <dependencies><!-- junit依赖 --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>5.9…...

Postman接口测试03|执行接口测试、全局变量和环境变量、接口关联、动态参数、断言
目录 七、Postman 1、安装 2、postman的界面介绍 八、Postman执行接口测试 1、请求页签 3、响应页签 九、Postman的环境变量和全局变量 1、创建环境变量和全局变量可以解决的问题 2、postman中的操作-全局变量 1️⃣手动设置 2️⃣代码设置 3️⃣界面获取 4️⃣代…...

UE5 丧尸类杂兵的简单AI
A、思路 1、关卡初始化时,自动产生随机巡逻点,小兵到达后,去另一个随机巡逻点。 2、加入视力,发现主角后,不再巡逻,而开始追击主角并攻击。条件循环。 3、加入听力。主角的奔跑与射击会产生噪音…...

Linux字符设备驱动开发的三种方式(分析+对比+示例)
文章目录 一. 字符设备的驱动方法二. 三种方法的对比三. 开发环境四. 代码示例1. 传统设备驱动模型2. 总线设备驱动模型3. 设备树驱动模型 五. 相关链接 一. 字符设备的驱动方法 字符设备驱动 是指在I/O传输过程中以字节流进行读写操作的设备。典型的如LCD、蜂鸣器、SPI、触摸屏…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...