贝叶斯神经网络(Bayesian Neural Network)
最近在研究贝叶斯神经网络,一些概念一直搞不清楚,这里整理一下相关内容,方便以后查阅。
贝叶斯神经网络(Bayesian Neural Network)
- 贝叶斯神经网络(Bayesian Neural Network)
- 1. BNN 的核心思想
- 2. BNN 的优化目标
- 3. BNN 的结构与特点
- 4. BNN 的训练过程
- 5. BNN 的优缺点
- 6. 与经典神经网络的对比
- 7. 简单代码示例(PyTorch)
- 总结
- BNN 的目标是计算后验分布
- 1. 经典神经网络与最大化似然估计
- 2. 贝叶斯神经网络的目标
- 3. 经典神经网络与贝叶斯神经网络的核心区别
- 4. 为什么不是最大化似然估计或最小化损失函数
- 5. 贝叶斯神经网络的优化目标
- 6. 实际意义:后验分布的好处
- 总结
- Bayes by Backprop
- 1. Bayes by Backprop 的目标
- 2. Bayes by Backprop 的实现细节
- 总结
- 经典神经网络优化的例子
- 使用均方根误差优化
- 代码实现
- 代码解释
- 对比 Bayes by Backprop
- 使用最大化似然估计优化
- 代码实现
- 代码解释
- MLE如何在此应用
- 对比 Bayes by Backprop
贝叶斯神经网络(Bayesian Neural Network)
贝叶斯神经网络(Bayesian Neural Network, BNN) 是在经典神经网络中引入贝叶斯概率框架的一种扩展模型。它将网络的权重参数表示为概率分布,而不是确定性的点值,从而可以量化模型和预测结果的不确定性。


1. BNN 的核心思想
在经典神经网络中,权重是固定的点值,通过最小化损失函数(如均方误差、交叉熵)来优化权重参数。而在贝叶斯神经网络中,权重被建模为概率分布,目标是通过数据更新这些分布(即计算后验分布)。
贝叶斯定理:
p ( w ∣ D ) = p ( D ∣ w ) p ( w ) p ( D ) , p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w}) p(\mathbf{w})}{p(\mathcal{D})}, p(w∣D)=p(D)p(D∣w)p(w),
其中:
- p ( w ∣ D ) p(\mathbf{w}|\mathcal{D}) p(w∣D):后验分布,表示在观察数据后,权重的分布。
- p ( D ∣ w ) p(\mathcal{D}|\mathbf{w}) p(D∣w):似然函数,表示数据在给定权重下的可能性。
- p ( w ) p(\mathbf{w}) p(w):先验分布,表示我们对权重的先验假设(如权重可能是零均值的高斯分布)。
- p ( D ) p(\mathcal{D}) p(D):边际似然,通常通过积分对所有可能的权重求和:
p ( D ) = ∫ p ( D ∣ w ) p ( w ) d w . p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w}) p(\mathbf{w}) d\mathbf{w}. p(D)=∫p(D∣w)p(w)dw.
2. BNN 的优化目标
BNN 的目标是计算后验分布 p ( w ∣ D ) p(\mathbf{w}|\mathcal{D}) p(w∣D)。由于边际似然 p ( D ) p(\mathcal{D}) p(D) 的计算通常非常困难(涉及高维积分),我们采用近似方法来推断后验分布,例如:
-
变分推断(Variational Inference)
用一个简单的分布 q ( w ∣ θ ) q(\mathbf{w}|\boldsymbol{\theta}) q(w∣θ) 近似 p ( w ∣ D ) p(\mathbf{w}|\mathcal{D}) p(w∣D),并最小化 KL 散度:
K L ( q ( w ∣ θ ) ∥ p ( w ∣ D ) ) . \mathrm{KL}(q(\mathbf{w}|\boldsymbol{\theta}) \| p(\mathbf{w}|\mathcal{D})). KL(q(w∣θ)∥p(w∣D)). -
蒙特卡罗方法(Monte Carlo Methods)
使用随机采样方法(如 MCMC)直接从后验分布中采样。 -
贝叶斯 by Backprop
通过重参数化技巧,将变分推断和神经网络的反向传播结合。
3. BNN 的结构与特点
BNN 与经典神经网络的主要区别是权重的建模方式:
- 经典神经网络:权重是固定值(点估计)。
- 贝叶斯神经网络:权重是概率分布,表示为 p ( w ) p(\mathbf{w}) p(w)。
在 BNN 中,推断网络输出时也会引入随机性:
p ( y ∣ x , D ) = ∫ p ( y ∣ x , w ) p ( w ∣ D ) d w . p(\mathbf{y}|\mathbf{x}, \mathcal{D}) = \int p(\mathbf{y}|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}. p(y∣x,D)=∫p(y∣x,w)p(w∣D)dw.
这意味着预测结果(输出 y \mathbf{y} y)不仅依赖于输入 x \mathbf{x} x,还受到权重分布的不确定性影响。
4. BNN 的训练过程
BNN 的训练过程包括以下步骤:
-
定义先验分布:
对权重 w \mathbf{w} w 定义一个先验分布 p ( w ) p(\mathbf{w}) p(w),例如零均值的高斯分布:
p ( w ) = N ( w ∣ 0 , σ 2 ) . p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \sigma^2). p(w)=N(w∣0,σ2). -
计算似然函数:
定义数据的似然函数 p ( D ∣ w ) p(\mathcal{D}|\mathbf{w}) p(D∣w),例如对分类任务,通常是交叉熵损失对应的概率分布。 -
近似后验分布:
用 q ( w ∣ θ ) q(\mathbf{w}|\boldsymbol{\theta}) q(w∣θ) 近似 p ( w ∣ D ) p(\mathbf{w}|\mathcal{D}) p(w∣D)。- q ( w ∣ θ ) q(\mathbf{w}|\boldsymbol{\theta}) q(w∣θ) 的参数(如均值 μ \mu μ 和方差 σ \sigma σ)是通过优化得到的。
- 目标是最大化变分下界:
L ( θ ) = E q ( w ∣ θ ) [ log p ( D ∣ w ) ] − K L ( q ( w ∣ θ ) ∥ p ( w ) ) . \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{q(\mathbf{w}|\boldsymbol{\theta})}[\log p(\mathcal{D}|\mathbf{w})] - \mathrm{KL}(q(\mathbf{w}|\boldsymbol{\theta}) \| p(\mathbf{w})). L(θ)=Eq(w∣θ)[logp(D∣w)]−KL(q(w∣θ)∥p(w)).
对最小化变分下界的理解:
第一部分:对数似然的期望 E q ( w ∣ θ ) [ log p ( D ∣ w ) ] \mathbb{E}_{q(\mathbf{w}|\boldsymbol{\theta})}[\log p(\mathcal{D}|\mathbf{w})] Eq(w∣θ)[logp(D∣w)]
- 作用:评估近似分布 q ( w ∣ θ ) q(\mathbf{w}|\boldsymbol{\theta}) q(w∣θ) 在训练数据 D \mathcal{D} D 上的拟合能力。
- 解释:从分布 q ( w ∣ θ ) q(\mathbf{w}|\boldsymbol{\theta}) q(w∣θ) 中采样权重 w \mathbf{w} w,然后计算其对应的对数似然 log p ( D ∣ w ) \log p(\mathcal{D}|\mathbf{w}) logp(D∣
相关文章:
贝叶斯神经网络(Bayesian Neural Network)
最近在研究贝叶斯神经网络,一些概念一直搞不清楚,这里整理一下相关内容,方便以后查阅。 贝叶斯神经网络(Bayesian Neural Network) 贝叶斯神经网络(Bayesian Neural Network)1. BNN 的核心思想2. BNN 的优化目标3. BNN 的结构与特点4. BNN 的训练过程5. BNN 的优缺点6. …...
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
DPO直接偏好优化:你的语言模型实际上是一个奖励模型 前言知识储备 什么是用户偏好数据目的:用于指导模型行为,使其输出更符合特定用户或者用户群体期望和喜好的信息。 用户偏好数据通常反映了用户对特定内容、风格、观点或者互动方式的倾向。 用户偏好数据的收集通常涉及直…...
如何通过 Kafka 将数据导入 Elasticsearch
作者:来自 Elastic Andre Luiz 将 Apache Kafka 与 Elasticsearch 集成的分步指南,以便使用 Python、Docker Compose 和 Kafka Connect 实现高效的数据提取、索引和可视化。 在本文中,我们将展示如何将 Apache Kafka 与 Elasticsearch 集成以…...
嵌入式系统 第十二讲 块设备和驱动程序设计
• 块设备是Linux三大设备之一(另外两种是字符设备,网络设备),块 设备也是通过/dev下的文件系统节点访问。 • 块设备的数据存储单位是块,块的大小通常为512B至32KB不等。 • 块设备每次能传输一个或多个块,…...
攻防世界web第六题upload
这是题目,可以看出是个上传文件的题目,考虑文件上传漏洞,先随便上传一个文件试试,要求上传的是图片。 可以看到上传成功。 考虑用一句话木马解决,构造文件并修改后缀为jpg,然后上传。 <?php eval($_POST[attack])…...
人工智能-Python网络编程-HTTP
用Python创建自己的HTTP服务器 方案一 HTTP-Python官方 python -m http.server 80 方案二 HTTP-概念版 import socketIPV4_ADDR 192.168.124.7 IPV4_PORT 8888# TCP 服务端程序必须绑定端口号,否则客户端找不到这个 TCP 服务端程序 class ServerSocket(obje…...
探索仓颉编程语言:功能、实战与展望
目录 引言 一.使用体验 二.功能剖析 1.丰富的数据类型与控制结构 2.强大的编程范式支持 3.标准库与模块系统 4.并发编程能力 三.实战案例 1.项目背景与目标 2.具体实现步骤 (1).导入必要的模块 (2).发送 HTTP 请求获取网页内容 (3).解析 HTML 页面提取文章信息 (…...
Unity-Editor扩展显示文件夹大小修复版 FileCapacity.cs
实战中是这样的,大项目, 容易定位美术大资产 (原版的代码有问题,每次点运行都会卡顿,大项目20S) //但其实获整个项目内容,1G都没有,有够省的(10年前的中型项目,一直有出DLC) using System; using System.Collections; using System.Collections.Generic; using Sy…...
BLE core 内容整理解释
本文内容比较杂散,只是做记录使用,后续会整理的有条理些 link layer 基本介绍 **Link Layer Control(链路层控制)**是蓝牙低功耗(BLE)协议栈的核心部分,负责实现设备间可靠、安全、低功耗的数…...
Linux CPU调度算法
简述 ● CPU数量 < 进程数 ● 每次CPU都要决定下一个运行的进程,这个选择叫做CPU调度;这个选择工作就叫做CPU调度程序 ● 如果一个进程中有多个线程的话,内核管理的线程就以线程为基本单位 ● 进程通常分为两种,一种长时间占…...
Linux套接字通信学习
Linux套接字通信 在网络通信的时候, 程序猿需要负责的应用层数据的处理(最上层),而底层的数据封装与解封装(如TCP/IP协议栈的功能)通常由操作系统、网络协议栈或相关网络库(如Socket库)实现。(程序员只需要…...
mybatis-plus 用法总结
MyBatis-Plus(简称 MP)是 MyBatis 的增强工具,旨在简化开发者的 CRUD 操作。它在 MyBatis 的基础上提供了更多的功能和便利性,如代码生成器、分页插件、性能分析插件等,使开发者能够更高效地进行数据库操作。MyBatis-P…...
小程序配置文件 —— 14 全局配置 - tabbar配置
全局配置 - tabBar配置 tabBar 字段:定义小程序顶部、底部 tab 栏,用以实现页面之间的快速切换;可以通过 tabBar 配置项指定 tab 栏的表现,以及 tab 切换时显示的对应页面; 在上面图中,标注了一些 tabBar …...
Redis-十大数据类型
Reids数据类型指的是value的类型,key都是字符串 redis-server:启动redis服务 redis-cli:进入redis交互式终端 常用的key的操作 redis的命令和参数不区分大小写 ,key和value区分 1、查看当前库所有的key keys * 2、判断某个key是否存在 exists key 3、查…...
linux系统编程(七)管道和FIFO
1、管道 使用系统调用pipe可以创建一个新管道: #include <unistd.h> int pipe(int filedes[2]);成功的pipe调用会在数组filedes中返回两个打开的文件描述符,读取端为filedes[0],写入端为filedes[1]。我们可以使用read/write系统调用在…...
【vLLM大模型TPS测试三部曲】
安装 pip install vllm模型自行下载 例如: https://modelscope.cn/models/jackle/Qwen2.5-Coder-32B-GPTQ-Int4/ 部署测试 export VLLM_MODELQwen2.5-Coder-32B-GPTQ-Int4 # 启动 python3 -m vllm.entrypoints.openai.api_server --model $VLLM_MODEL --deviceauto --enf…...
Elasticsearch:使用 Ollama 和 Go 开发 RAG 应用程序
作者:来自 Elastic Gustavo Llermaly 使用 Ollama 通过 Go 创建 RAG 应用程序来利用本地模型。 关于各种开放模型,有很多话要说。其中一些被称为 Mixtral 系列,各种规模都有,而一种可能不太为人所知的是 openbiollm,这…...
Windows平台ROBOT安装
Windows环境下ROBOT的安装,按照下文进行部署ROBOT的前提是你的python已安装并且环境变量已设置好. 一、安装setuptools 1、下载后安装 https://pypi.python.org/pypi/setuptools/ 下载你需要的包 setuptools-75.6.0.tar.gz 解压下载的包在命令行中进入该包,敲击如下命令后…...
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
欢迎拜访:羑悻的小杀马特.-CSDN博客 本篇主题:带你众人皆知的约瑟夫环问题 制作日期:2024.12.29 隶属专栏:C/C题海汇总 目录 引言: 一约瑟夫环问题介绍: 11问题介绍: 1.2起源与历史背景&…...
代码随想录算法训练营第51期第32天 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
理论基础 动态规划:dp,每一个状态都是由上个状态推导出来的,因为我是先写完三道题再看理论的,所以有点感概; 确定dp数组(dp table)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
