OpenCV-Python实战(4)——图像处理基础知识
一、坐标
在 OpenCV 中图像左上角坐标为(0,0),竖直向下为 Y(height) ;水平向右为 X(width)。
二、生成图像
2.1 灰度图像
img = np.zeros((h,w), dtype = np.uint8)
img = np.ones((h,w), dtype = np.uint8)
img = np.random.randint(256, size = [h,w], dtype = np.uint8)
灰度图像的 size 只有(height,width)两个通道。
2.2 彩色图像
img = np.zeros((h,w,3), dtype = np.uint8)
img = np.ones((h,w,3), dtype = np.uint8)
img = np.random.randint(256, size = [h,w,3], dtype = np.uint8)
彩色图像的 size 有(height,width,channel)三个通道。
三、图像数值修改
3.1 单个像素点
将(200,200,:)单个像素点的各个通道值都修改为255。
img = cv2.imread('Lena.png')
img[200,200,:]=255
3.2 区域像素点
将(200:250,200:250,:)这个区域的各个通道值都修改为255。
img = cv2.imread('Lena.png')
img[200:250,200:250,:]=255
四、应用
4.1 mask
x = np.zeros((500,500),dtype=np.uint8)
x[150:350,150:350]=255
cv2.imshow('mask',x)
4.2 马赛克
mask = np.random.randint(255,size = (150,150,3),dtype=np.uint8)
img[200:350,200:350]=mask
cv2.imshow('img_mask',img)
相关文章:

OpenCV-Python实战(4)——图像处理基础知识
一、坐标 在 OpenCV 中图像左上角坐标为(0,0),竖直向下为 Y(height) ;水平向右为 X(width)。 二、生成图像 2.1 灰度图像 img np.zeros((h,w), dtype np.uint8) i…...
音视频入门基础:MPEG2-PS专题(1)——MPEG2-PS官方文档下载
一、引言 MPEG2-PS(又称PS,Program Stream,程序流,节目流)是一种多路复用数字音频、视频等的封装容器。MPEG2-PS将一个或多个分组但有共同的时间基准的基本数据流 (PES)合并成一个整体流。它是…...

Qt自定义步骤引导按钮
1. 步骤引导按钮 实际在开发项目过程中,由一些流程比较繁琐,为了给客户更好的交互体验,往往需要使用step1->step2这种引导对话框或者引导按钮来引导用户一步步进行设置;话不多说,先上效果 2. 实现原理 实现起来…...

贝叶斯神经网络(Bayesian Neural Network)
最近在研究贝叶斯神经网络,一些概念一直搞不清楚,这里整理一下相关内容,方便以后查阅。 贝叶斯神经网络(Bayesian Neural Network) 贝叶斯神经网络(Bayesian Neural Network)1. BNN 的核心思想2. BNN 的优化目标3. BNN 的结构与特点4. BNN 的训练过程5. BNN 的优缺点6. …...
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
DPO直接偏好优化:你的语言模型实际上是一个奖励模型 前言知识储备 什么是用户偏好数据目的:用于指导模型行为,使其输出更符合特定用户或者用户群体期望和喜好的信息。 用户偏好数据通常反映了用户对特定内容、风格、观点或者互动方式的倾向。 用户偏好数据的收集通常涉及直…...

如何通过 Kafka 将数据导入 Elasticsearch
作者:来自 Elastic Andre Luiz 将 Apache Kafka 与 Elasticsearch 集成的分步指南,以便使用 Python、Docker Compose 和 Kafka Connect 实现高效的数据提取、索引和可视化。 在本文中,我们将展示如何将 Apache Kafka 与 Elasticsearch 集成以…...

嵌入式系统 第十二讲 块设备和驱动程序设计
• 块设备是Linux三大设备之一(另外两种是字符设备,网络设备),块 设备也是通过/dev下的文件系统节点访问。 • 块设备的数据存储单位是块,块的大小通常为512B至32KB不等。 • 块设备每次能传输一个或多个块,…...

攻防世界web第六题upload
这是题目,可以看出是个上传文件的题目,考虑文件上传漏洞,先随便上传一个文件试试,要求上传的是图片。 可以看到上传成功。 考虑用一句话木马解决,构造文件并修改后缀为jpg,然后上传。 <?php eval($_POST[attack])…...
人工智能-Python网络编程-HTTP
用Python创建自己的HTTP服务器 方案一 HTTP-Python官方 python -m http.server 80 方案二 HTTP-概念版 import socketIPV4_ADDR 192.168.124.7 IPV4_PORT 8888# TCP 服务端程序必须绑定端口号,否则客户端找不到这个 TCP 服务端程序 class ServerSocket(obje…...

探索仓颉编程语言:功能、实战与展望
目录 引言 一.使用体验 二.功能剖析 1.丰富的数据类型与控制结构 2.强大的编程范式支持 3.标准库与模块系统 4.并发编程能力 三.实战案例 1.项目背景与目标 2.具体实现步骤 (1).导入必要的模块 (2).发送 HTTP 请求获取网页内容 (3).解析 HTML 页面提取文章信息 (…...

Unity-Editor扩展显示文件夹大小修复版 FileCapacity.cs
实战中是这样的,大项目, 容易定位美术大资产 (原版的代码有问题,每次点运行都会卡顿,大项目20S) //但其实获整个项目内容,1G都没有,有够省的(10年前的中型项目,一直有出DLC) using System; using System.Collections; using System.Collections.Generic; using Sy…...

BLE core 内容整理解释
本文内容比较杂散,只是做记录使用,后续会整理的有条理些 link layer 基本介绍 **Link Layer Control(链路层控制)**是蓝牙低功耗(BLE)协议栈的核心部分,负责实现设备间可靠、安全、低功耗的数…...

Linux CPU调度算法
简述 ● CPU数量 < 进程数 ● 每次CPU都要决定下一个运行的进程,这个选择叫做CPU调度;这个选择工作就叫做CPU调度程序 ● 如果一个进程中有多个线程的话,内核管理的线程就以线程为基本单位 ● 进程通常分为两种,一种长时间占…...

Linux套接字通信学习
Linux套接字通信 在网络通信的时候, 程序猿需要负责的应用层数据的处理(最上层),而底层的数据封装与解封装(如TCP/IP协议栈的功能)通常由操作系统、网络协议栈或相关网络库(如Socket库)实现。(程序员只需要…...

mybatis-plus 用法总结
MyBatis-Plus(简称 MP)是 MyBatis 的增强工具,旨在简化开发者的 CRUD 操作。它在 MyBatis 的基础上提供了更多的功能和便利性,如代码生成器、分页插件、性能分析插件等,使开发者能够更高效地进行数据库操作。MyBatis-P…...

小程序配置文件 —— 14 全局配置 - tabbar配置
全局配置 - tabBar配置 tabBar 字段:定义小程序顶部、底部 tab 栏,用以实现页面之间的快速切换;可以通过 tabBar 配置项指定 tab 栏的表现,以及 tab 切换时显示的对应页面; 在上面图中,标注了一些 tabBar …...

Redis-十大数据类型
Reids数据类型指的是value的类型,key都是字符串 redis-server:启动redis服务 redis-cli:进入redis交互式终端 常用的key的操作 redis的命令和参数不区分大小写 ,key和value区分 1、查看当前库所有的key keys * 2、判断某个key是否存在 exists key 3、查…...
linux系统编程(七)管道和FIFO
1、管道 使用系统调用pipe可以创建一个新管道: #include <unistd.h> int pipe(int filedes[2]);成功的pipe调用会在数组filedes中返回两个打开的文件描述符,读取端为filedes[0],写入端为filedes[1]。我们可以使用read/write系统调用在…...

【vLLM大模型TPS测试三部曲】
安装 pip install vllm模型自行下载 例如: https://modelscope.cn/models/jackle/Qwen2.5-Coder-32B-GPTQ-Int4/ 部署测试 export VLLM_MODELQwen2.5-Coder-32B-GPTQ-Int4 # 启动 python3 -m vllm.entrypoints.openai.api_server --model $VLLM_MODEL --deviceauto --enf…...

Elasticsearch:使用 Ollama 和 Go 开发 RAG 应用程序
作者:来自 Elastic Gustavo Llermaly 使用 Ollama 通过 Go 创建 RAG 应用程序来利用本地模型。 关于各种开放模型,有很多话要说。其中一些被称为 Mixtral 系列,各种规模都有,而一种可能不太为人所知的是 openbiollm,这…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...