【Elasticsearch】DSL查询文档
目录
1.DSL查询文档
1.1.DSL查询分类
1.2.全文检索查询
1.2.1.使用场景
1.2.2.基本语法
1.2.3.示例
1.2.4.总结
1.3.精准查询
1.3.1.term查询
1.3.2.range查询
1.3.3.总结
1.4.地理坐标查询
1.4.1.矩形范围查询
1.4.2.附近查询
1.5.复合查询
1.5.1.相关性算分
1.5.2.算分函数查询
1)语法说明
2)示例
3)小结
1.5.3.布尔查询
1)语法示例:
2)示例
3)小结
1.DSL查询文档
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
1.1.DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
-
查询所有:查询出所有数据,一般测试用。例如:match_all
-
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
-
match_query
-
multi_match_query
-
-
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
-
ids
-
range
-
term
-
-
地理(geo)查询:根据经纬度查询。例如:
-
geo_distance
-
geo_bounding_box
-
-
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
-
bool
-
function_score
-
查询的语法基本一致:
GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}
我们以查询所有为例,其中:
-
查询类型为match_all
-
没有查询条件
// 查询所有
GET /indexName/_search
{"query": {"match_all": {}}
}
其它查询无非就是查询类型、查询条件的变化。
1.2.全文检索查询
1.2.1.使用场景
全文检索查询的基本流程如下:
-
对用户搜索的内容做分词,得到词条
-
根据词条去倒排索引库中匹配,得到文档id
-
根据文档id找到文档,返回给用户
比较常用的场景包括:
-
商城的输入框搜索
-
百度输入框搜索
例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
1.2.2.基本语法
常见的全文检索查询包括:
-
match查询:单字段查询
-
multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}
mulit_match语法如下:
GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}
1.2.3.示例
match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?
因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。
但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
1.2.4.总结
match和multi_match的区别是什么?
-
match:根据一个字段查询
-
multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
1.3.精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
-
term:根据词条精确值查询
-
range:根据值的范围查询
1.3.1.term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}
示例:
当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}}
}
示例:

1.3.3.总结
精确查询常见的有哪些?
-
term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
-
range查询:根据数值范围查询,可以是数值、日期的范围
1.4.地理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.8] | Elastic
常见的使用场景包括:
-
携程:搜索我附近的酒店
-
滴滴:搜索我附近的出租车
-
微信:搜索我附近的人
附近的酒店:

附近的车:

1.4.1.矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询
GET /indexName/_search
{"query": {"geo_bounding_box": {"FIELD": {"top_left": { // 左上点"lat": 31.1,"lon": 121.5},"bottom_right": { // 右下点"lat": 30.9,"lon": 121.7}}}}
}
这种并不符合“附近的人”这样的需求,所以我们就不做了。
1.4.2.附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:
// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}}
}
示例:
我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。
然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。
1.5.复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
-
fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
-
bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
1.5.1.相关性算分
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 "虹桥如家",结果如下:
[{"_score" : 17.850193,"_source" : {"name" : "虹桥如家酒店真不错",}},{"_score" : 12.259849,"_source" : {"name" : "外滩如家酒店真不错",}},{"_score" : 11.91091,"_source" : {"name" : "迪士尼如家酒店真不错",}}
]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
-
TF-IDF算法
-
BM25算法,elasticsearch5.1版本后采用的算法
1.5.2.算分函数查询
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明

function score 查询中包含四部分内容:
-
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
-
过滤条件:filter部分,符合该条件的文档才会重新算分
-
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
-
weight:函数结果是常量
-
field_value_factor:以文档中的某个字段值作为函数结果
-
random_score:以随机数作为函数结果
-
script_score:自定义算分函数算法
-
-
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
-
multiply:相乘
-
replace:用function score替换query score
-
其它,例如:sum、avg、max、min
-
function score的运行流程如下:
-
1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
-
2)根据过滤条件,过滤文档
-
3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
-
4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
-
过滤条件:决定哪些文档的算分被修改
-
算分函数:决定函数算分的算法
-
运算模式:决定最终算分结果
2)示例
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
-
原始条件:不确定,可以任意变化
-
过滤条件:brand = "如家"
-
算分函数:可以简单粗暴,直接给固定的算分结果,weight
-
运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search
{"query": {"function_score": {"query": { .... }, // 原始查询,可以是任意条件"functions": [ // 算分函数{"filter": { // 满足的条件,品牌必须是如家"term": {"brand": "如家"}},"weight": 2 // 算分权重为2}],"boost_mode": "sum" // 加权模式,求和}}
}
测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结
function score query定义的三要素是什么?
-
过滤条件:哪些文档要加分
-
算分函数:如何计算function score
-
加权方式:function score 与 query score如何运算
1.5.3.布尔查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
-
must:必须匹配每个子查询,类似“与”
-
should:选择性匹配子查询,类似“或”
-
must_not:必须不匹配,不参与算分,类似“非”
-
filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
-
搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
-
其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}}
}
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
-
名称搜索,属于全文检索查询,应该参与算分。放到must中
-
价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
-
周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结
bool查询有几种逻辑关系?
-
must:必须匹配的条件,可以理解为“与”
-
should:选择性匹配的条件,可以理解为“或”
-
must_not:必须不匹配的条件,不参与打分
-
filter:必须匹配的条件,不参与打分
相关文章:
【Elasticsearch】DSL查询文档
目录 1.DSL查询文档 1.1.DSL查询分类 1.2.全文检索查询 1.2.1.使用场景 1.2.2.基本语法 1.2.3.示例 1.2.4.总结 1.3.精准查询 1.3.1.term查询 1.3.2.range查询 1.3.3.总结 1.4.地理坐标查询 1.4.1.矩形范围查询 1.4.2.附近查询 1.5.复合查询 1.5.1.相关性算分 …...
接口测试Day04-postman生成测试报告ihrm项目
测试报告-利用newman插件 安装node.js 安装 双击 .msi 文件,一路下一步安装即可。无需特殊设定。测试安装成功 npm -v 安装npm 安装newman 安装newman npm install -g newman试安装成功 newman -v安装newman插件 - 扩展版 npm install -g newman-reporter-htmlex…...
常见的排序算法过程和比较分析
比较分析 排序类别排序算法时间复杂度(最好)时间复杂度(最坏)时间复杂度(平均)辅助空间复杂度稳定性插入排序直接插入排序O(n)O(n)O(n)O(1)稳定插入排序折半插入排序O(n)O(n)O(n)O(1)稳定插入排序希尔排序…...
基于Vue+SSM+SpringCloudAlibaba书籍管理系统
功能要求 一、登录功能(http://localhost:8080/#/login) 输入账号和密码(admin/admin)进行登录: 如果密码错误,给出提示信息 如果密码正确,跳转到主页 账号或密码错误: 账号密码正确:跳转到…...
生成式 AI 增强了个人创造力,但减少了新内容的集体多样性
创造力是人类的核心。生成式人工智能 (AI)(包括强大的大型语言模型 (LLM))有望让人类通过提供新想法来更具创造力,或者通过锚定生成式 AI 想法来降低创造力。我们在一项在线实验中研究了生成式 AI 想法对短篇小说制作的因果影响,其中一些作家从 LLM 那里获得了故事创意…...
【DC简介--Part1】
DC简介-Part1 1 overview1.1 DC操作步骤1.2 Steps1.2.1 Develop HDL files1.2.2 Specify libraries1.2.3 Read design1.2.4 Define design environment1.2.5 Set design constraints1.2.6 Select compile strategy1.2.7 Synthesize and optimize the design1.2.8 Analyze and r…...
Spark写入HDFS数据SUCCESS文件生成控制
Spark写入HDFS数据SUCCESS文件 1、_SUCCESS的控制2、_SUCCESS的实现 1、_SUCCESS的控制 与Hive不同,MapReduce和Spark在执行写入HDFS数据任务时,数据输出目录一般都会有一个名为_SUCCESS的空文件,该文件仅用来表示任务执行成功 但有些时候&a…...
MySQL 服务器简介
通常所说的 MySQL 服务器指的是mysqld程序,当运⾏mysqld后对外提供MySQL 服务,这个专题的内容涵盖了以下关于MySQL 服务器以及相关配置的内容,包括: 服务器⽀持的启动选项。可以在命令⾏和配置⽂件中指定这些选项。 服务器系统变…...
如何使用Python从SACS结构数据文件中提取节点数据信息并导出到EXCEL
在现代工程设计中,结构分析和数据处理是不可或缺的一部分。特别是在海洋工程、桥梁建设等领域,SACS文件被广泛应用。这种文件格式包含了结构模型的各种重要信息,包括节点(JOINT)、构件(ELEMENT)…...
Java网约车项目实战:实现抢单功能详解
在网约车项目中,抢单功能是非常关键的一部分,它决定了司机能否及时响应乘客的订单,提高整个平台的运营效率。本文将详细介绍如何使用Java来实现网约车项目的抢单功能,并提供一个完整的代码示例,以便读者能够直接运行和…...
SSRF服务端请求Gopher伪协议白盒测试
前言 是什么SSRF? 这个简单点说就是 服务端的请求伪造 就是这个如果是个 请求图片的网站 他的目的是请求外部其他网站的 图片 但是 SSRF指的是让他请求本地的图片 再展示出来 请求的是他的服务器上的图片 SSRF(Server-Side Request Forgery:服务器端请求伪造) …...
html+css+js网页设计 美食 家美食1个页面
htmlcssjs网页设计 美食 家美食1个页面 网页作品代码简单,可使用任意HTML辑软件(如:Dreamweaver、HBuilder、Vscode 、Sublime 、Webstorm、Text 、Notepad 等任意html编辑软件进行运行及修改编辑等操作)。 获取源码 1…...
初学stm32---高级定时器输出n个pwm波
目录 高级定时器简介:(F1) 高级定时器框图 重复计数器特性 高级定时器输出指定个数PWM实验原理 高级定时器输出指定个数PWM实验配置步骤 相关HAL库函数介绍 关键结构体介绍 高级定时器简介:(F1) 1.高级定时器 :TIM1/TIM8 2.主要特性&…...
旅游管理系统|Java|SSM|VUE| 前后端分离
【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...
imgproxy图像处理的高效与安全
摘要 imgproxy作为一个高效且安全的独立服务器,为图像处理提供了全新的解决方案。它不仅简化了图像调整和转换的过程,还极大地提升了处理速度,确保了整个流程的安全性。通过集成imgproxy,用户可以轻松优化网页上的图像,提高加载速度,改善用户体验。本文将深入探讨imgpro…...
LLM并行计算的论文
LLM并行计算的论文 基础并行计算方法相关 《Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism》:提出了Gpipe这种流水线并行方法,通过将数据批量进一步等分成若干microbatch,并以流水线的方式执行,减少计算中空泡的比例,极大地拓展了模型…...
Linux 搭建 nginx+keepalived 高可用 | Nginx反向代理
注意:本文为 “Linux 搭建 nginxkeepalived (主备双主模式) 高可用 | Nginx反向代理” 相关文章合辑。 KeepalivedNginx实现高可用(HA) xyang0917 于 2016-09-17 00:24:15 发布 keepalived 的 HA 分为抢占模式和非抢占模式,抢占…...
Spring Boot 项目中 Maven 剔除无用 Jar 引用的最佳实践
目录 引言Maven 依赖管理的基础概念 2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机制 无用依赖的常见问题与影响剔除无用 Jar 引用的常见方法 4.1 识别无用依赖4.2 使用 Maven 的 dependency:analyze 插件4.3 配置 scope 以优化依赖范围4.4 使用 exclude 排除传递依赖4.5 分析…...
useWhyDidYouUpdate详解
目录 API Params demo演示 源码 useWhyDidYouUpdate是ahooks库中的一个hook函数,用于帮助开发者排查是哪个属性改变导致了组件的 rerender。 API type IProps Record<string, any>;useWhyDidYouUpdate(componentName: string, props: IProps): void; …...
c++入门——c++输入cin和输出cout的简单使用
c输入cin、输出cout 1 cin2 cout3 cin和cout说明 c在c语言的输入、输出函数的基础上进行了封装。 1 cin c可以理解为控制台,in可以理解为输入。 参考代码: void f(){int a;float b;double c;char d;cin>>a>>b>>c>>d;//这里和…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
