【机器学习】梯度下降
文章目录
- 1. 梯度下降概念
- 2. 梯度下降的技巧
- 2.1 动态设置学习率
- 2.2 Adagrad调整梯度
- 2.3 随机梯度下降(SGD)
- 2.4 特征缩放
- 3. 梯度下降理论基础
1. 梯度下降概念
- 梯度:Loss 对参数在某一点的偏微分,函数沿梯度的方向具有最大的变化率
- 梯度下降:从某点出发,计算该点梯度,以一定的学习率沿着该梯度的反方向移动,直到梯度接近 0
- 公式: w t + 1 = w t − η d L d w w_{t+1} = w_t - \eta \frac{dL}{dw} wt+1=wt−ηdwdL
2. 梯度下降的技巧
2.1 动态设置学习率
- 原理:离终端越远,学习率越大;离终点越近,学习率越小。
- 公式: η t = η t \eta_t = \frac{\eta}{\sqrt{t}} ηt=tη
其中,t 是迭代次数。
2.2 Adagrad调整梯度
-
原理:
- 梯度大的时候,调正的步伐不一定要大,要综合考虑到二阶导数的影响。
- 通过参数的历史信息来调整学习率。
-
使用 Adagrad 方法更新参数的公式:
- η t σ t = η ∑ i = 1 t ( g i ) 2 \frac{\eta^t}{\sigma^t} = \frac{\eta}{\sqrt{\sum_{i=1}^{t} (g^i)^2}} σtηt=∑i=1t(gi)2η
- w t + 1 = w t − η t σ t g t w^{t+1} = w^t - \frac{\eta^t}{\sigma^t} g^t wt+1=wt−σtηtgt
其中: σ t \sigma^t σt 是梯度平方的累加和(即历史梯度的平方和的平方根)。
-
总结:化简后,分子是一阶导数,分母其实是反应二阶导数的影响
2.3 随机梯度下降(SGD)
- 概念:不考虑所有样本,每次随机选取某个或某些样本点来做梯度下降更新参数。
- 作用:
- 训练更迅速,结果也不会太差。
- 可能受到某些样本的影响,导致不精确。
2.4 特征缩放
- 概念:将不同的输入特征统一缩放到相同的范围或分布。
特征归一化
- 公式: x ′ = x − min ( x ) max ( x ) − min ( x ) x' = \frac{x - \min(x)}{\max(x) - \min(x)} x′=max(x)−min(x)x−min(x)
- 将数据统一到特定的范围,避免某些极端数据的影响。
特征标准化
-
公式: x ′ = x − μ σ x' = \frac{x - \mu}{\sigma} x′=σx−μ
其中:- μ \mu μ 是特征的均值。
- σ \sigma σ 是特征的标准差。
-
效果:
- 数据更符合正态分布,处理后的特征均值为 0,标准差为 1。
- 减少特征间方差的差异,帮助加速收敛。
特征缩放的优点
-
未处理之前:
- Loss 是一个椭圆,每次更新沿着等高线(梯度)方向走,不是往圆心(最低点)走。
- 如果不使用 Adagrad,可能很难得到好的结果。
-
处理之后:
- Loss 是一个圆,每次更新都往圆心(最低点)走,容易训练。
- 有助于模型训练和加快收敛速度。
3. 梯度下降理论基础
泰勒级数近似
- 理论:
- 移动方向与梯度(偏导)方向相反时,内积最小。
- 发现附近以 $\theta $ 半径圈的最小值,移动到那里。
使用前提
- Loss function 必须是无限可微的。
- 附近圈小,可以忽略高次项,意味着学习率要足够小。
相关文章:
【机器学习】梯度下降
文章目录 1. 梯度下降概念2. 梯度下降的技巧2.1 动态设置学习率2.2 Adagrad调整梯度2.3 随机梯度下降(SGD)2.4 特征缩放 3. 梯度下降理论基础 1. 梯度下降概念 梯度:Loss 对参数在某一点的偏微分,函数沿梯度的方向具有最大的变化…...
【leetcode 07】707.设计链表
要点⭐ 链表的常见操作 获取第n个节点的值 头部插入节点 尾部插入节点 第n个节点前插入(先立新,在破旧) 删除第n个节点 class ListNode{int val;ListNode next;ListNode(){};ListNode(int val){this.valval;} } class MyLinkedList {//链表大…...
【Spring】详解(上)
Spring 框架核心原理与应用(上) 一、Spring 框架概述 (一)诞生背景 随着 Java 应用程序规模的不断扩大以及复杂度的日益提升,传统的 Java开发方式在对象管理、代码耦合度等方面面临诸多挑战。例如,对象之…...

短视频矩阵系统后端源码搭建实战与技术详解,支持OEM
一、引言 随着短视频行业的蓬勃发展,短视频矩阵系统成为了众多企业和创作者进行多平台内容运营的有力工具。后端作为整个系统的核心支撑,负责处理复杂的业务逻辑、数据存储与交互,其搭建的质量直接影响着系统的性能、稳定性和可扩展性。本文将…...
力扣每日刷题
24. 两两交换链表中的节点 - 力扣(LeetCode) 递归写法 做题思路:把需要交换的两个数的前一个数作为参数传入,然后使用一个变量保存这两个变量的后一个数,交换这个两个数,最后把第二个数(原第一…...

QT的信号和槽页面的应用
完善对话框,点击登录弹出对话框,如果账号和密码匹配,则弹出信息对话框,给出提示”登录成功“,提供一个Ok按钮,用户点击Ok后,关闭登录界面,跳转到其他界面 如果账号和密码不匹配&…...

【Java】线程相关面试题 (基础)
文章目录 线程与进程区别并行与并发区别解析概念含义资源利用执行方式应用场景 创建线程线程状态如何保证新建的三个线程按顺序执行wait方法和sleep方法的不同所属类和使用场景方法签名和参数说明调用wait方法的前提条件被唤醒的方式与notify/notifyAll方法的协作使用示例注意事…...

【数字化】华为一体四面细化架构蓝图
导读:华为的“一体四面”企业架构设计方法是一种综合性的管理框架,它通过业务架构、信息架构、应用架构和技术架构的集成设计,构建出一个既符合业务需求,又具备高度灵活性和可扩展性的IT系统。这种架构设计方法强调从业务视角出发…...

frameworks 之 WMS添加窗口流程
frameworks 之 触摸事件窗口查找 1.获取WindowManager对象2.客户端添加view3. 服务端添加view (NO_SURFACE)4.重新布局 (DRAW_PENDING)4.1 创建 SurfaceControl 5.通知绘制 (COMMIT_DRAW_PENDING, READY_TO_SHOW, HAS_DRAWN)5. 1 布局测量和刷新 6.总结 …...
搜索方法归类全解析
搜索方法归类全解析 搜索方法是人工智能和计算机科学中用于解决问题、优化路径或发现数据模式的关键技术。根据不同的标准,搜索方法可以被分为多种类别。本文将详细介绍这些分类标准,并探讨每一类的特点及其代表算法,同时补充更多关于搜索的相…...
第1关:简易考试系统之用户注册
任务描述 本关任务:实现简易考试系统中新用户注册的功能。 编程要求 仔细阅读右侧编辑区内给出的代码框架及注释,在 Begin-End 中实现简易考试系统中新用户注册的功能,具体要求如下: User.java 提供了用户的基本信息,…...

VMware的三种网络模式——在NAT模式下开放接口为局域网内其他主机提供服务
众所周知 VMware 有三种常用的网络通讯模式,分别是:Bridged(桥接模式)、NAT(网络地址转换模式)、Host-Only(仅主机模式),它们各有不同的用法。 Bridged 桥接模式是与主机…...

智慧地下采矿:可视化引领未来矿业管理
图扑智慧地下采矿可视化平台通过整合多源数据,提供实时 3D 矿井地图及分析,提升了矿产开采的安全性与效率,为矿业管理提供数据驱动的智能决策支持,推动行业数字化转型。...

流量主微信小程序工具类去水印
工具类微信小程序流量主带后台管理,可开通广告,带自有后台管理,不借助第三方接口 介绍 支持抖音,小红书,哔哩哔哩视频水印去除,功能实现不借助第三方平台。可实现微信小程序流量主广告变现功能,…...
代码随想录算法【Day5】
DAY5 1.熟悉哈希表的数据结构:数组、map和set,使用方法、使用场景 2.哈希表应用场景:解决给你一个元素,判断它在集合里是否出现过。 242.有效的字母异位词 本题用数组解决的。 class Solution { public:bool isAnagram(strin…...
Leetcode 3403. Find the Lexicographically Largest String From the Box I
Leetcode 3403. Find the Lexicographically Largest String From the Box I 1. 解题思路2. 代码实现 题目链接:3403. Find the Lexicographically Largest String From the Box I 1. 解题思路 这一题我一开始的思路是想用动态规划,结果发现想复杂了&…...

【游戏设计原理】36 - 环境叙事
一、 分析并总结 核心要点 环境叙事的本质:将游戏的设定视为叙事的一部分,利用环境元素(如物品、对话、视觉效果等)传递故事和信息。世界设定的重要性:一个强大的世界设定可以像角色一样,驱动叙事并增强玩…...
Python 中的 lambda 函数和嵌套函数
Python 中的 lambda 函数和嵌套函数 Python 中的 lambda 函数和嵌套函数Python 中的 lambda 函数嵌套函数(内部函数)封装辅助函数闭包和工厂函数 Python 中的 lambda 函数和嵌套函数 Python 中的 lambda 函数 Lambda 函数是基于单行表达式的匿名函数。…...
语言模型评价指标
1. BLEU(Bilingual Evaluation Understudy) 目标:衡量生成文本和参考文本之间的词汇相似性。 计算步骤: N-gram 匹配: 将生成文本和参考文本分解成 1-gram、2-gram、…、N-gram(通常取到 4-gramÿ…...

工程师 - MSYS2介绍
https://www.msys2.org/ MSYS2 是一系列工具和库,为您提供了一个易于使用的环境,用于构建、安装和运行本地 Windows 软件。 MSYS2 is a collection of tools and libraries providing you with an easy-to-use environment for building, installing an…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
JS红宝书笔记 - 3.3 变量
要定义变量,可以使用var操作符,后跟变量名 ES实现变量初始化,因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符,可以创建一个全局变量 如果需要定义…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...