当前位置: 首页 > news >正文

语言模型评价指标

1. BLEU(Bilingual Evaluation Understudy)

目标:衡量生成文本和参考文本之间的词汇相似性。

计算步骤:
  1. N-gram 匹配

    • 将生成文本和参考文本分解成 1-gram、2-gram、…、N-gram(通常取到 4-gram)。
    • 统计生成文本中的 N-gram 是否出现在参考文本中。
  2. 精确匹配率

    • 对每个 N-gram,计算生成文本中匹配的数量与总数量的比值:
      Precision n = 生成文本中匹配的 N-gram 数 生成文本中的 N-gram 总数 \text{Precision}_n = \frac{\text{生成文本中匹配的 N-gram 数}}{\text{生成文本中的 N-gram 总数}} Precisionn=生成文本中的 N-gram 总数生成文本中匹配的 N-gram 
  3. 加权平均

    • 对不同的 N-gram 精确率取加权几何平均(权重通常相等):
      BLEU N = exp ⁡ ( ∑ n = 1 N w n ⋅ log ⁡ ( Precision n ) ) \text{BLEU}_N = \exp\left(\sum_{n=1}^N w_n \cdot \log(\text{Precision}_n)\right) BLEUN=exp(n=1Nwnlog(Precisionn))
      其中, w n = 1 N w_n = \frac{1}{N} wn=N1
  4. 长度惩罚

    • 如果生成文本的长度与参考文本长度差距过大,BLEU 分数会受到惩罚:
      BP = { 1 , 生成文本长度 > 参考文本长度 exp ⁡ ( 1 − 参考文本长度 生成文本长度 ) , 否则 \text{BP} = \begin{cases} 1, & \text{生成文本长度} > \text{参考文本长度} \\ \exp\left(1 - \frac{\text{参考文本长度}}{\text{生成文本长度}}\right), & \text{否则} \end{cases} BP={1,exp(1生成文本长度参考文本长度),生成文本长度>参考文本长度否则
  5. 最终公式
    BLEU = BP ⋅ exp ⁡ ( ∑ n = 1 N w n ⋅ log ⁡ ( Precision n ) ) \text{BLEU} = \text{BP} \cdot \exp\left(\sum_{n=1}^N w_n \cdot \log(\text{Precision}_n)\right) BLEU=BPexp(n=1Nwnlog(Precisionn))


2. ROUGE(Recall-Oriented Understudy for Gisting Evaluation)

目标:衡量生成文本覆盖参考文本的程度,更关注召回率

主要变体:
  1. ROUGE-N(基于 N-gram 的召回率):

    • 计算生成文本中匹配的 N-gram 占参考文本中 N-gram 的比例:
      ROUGE-N = 匹配的 N-gram 数量 参考文本中的 N-gram 总数 \text{ROUGE-N} = \frac{\text{匹配的 N-gram 数量}}{\text{参考文本中的 N-gram 总数}} ROUGE-N=参考文本中的 N-gram 总数匹配的 N-gram 数量
  2. ROUGE-L(基于最长公共子序列的匹配):

    • 计算生成文本与参考文本的最长公共子序列(LCS),然后基于 LCS 的长度计算召回率和精确率:
      R = LCS 参考文本长度 , P = LCS 生成文本长度 R = \frac{\text{LCS}}{\text{参考文本长度}}, \quad P = \frac{\text{LCS}}{\text{生成文本长度}} R=参考文本长度LCS,P=生成文本长度LCS
      ROUGE-L = ( 1 + β 2 ) ⋅ P ⋅ R R + β 2 ⋅ P \text{ROUGE-L} = \frac{(1 + \beta^2) \cdot P \cdot R}{R + \beta^2 \cdot P} ROUGE-L=R+β2P(1+β2)PR
      其中, β \beta β 是召回权重。
  3. ROUGE-S(基于跳跃的二元词对):

    • 计算生成文本和参考文本中,所有词对的匹配情况。

3. METEOR(Metric for Evaluation of Translation with Explicit ORdering)

目标:解决 BLEU 无法捕获语义相似性和顺序的重要性问题。

计算步骤:
  1. 匹配策略

    • 包括词形匹配(exact)、同义词匹配(synonymy)、词干匹配(stemming)。
    • 对生成文本中的每个词,找出参考文本中最优匹配。
  2. 精确率与召回率

    • 计算生成文本与参考文本的匹配精度(P)和召回率(R):
      P = 匹配的词数 生成文本的总词数 , R = 匹配的词数 参考文本的总词数 P = \frac{\text{匹配的词数}}{\text{生成文本的总词数}}, \quad R = \frac{\text{匹配的词数}}{\text{参考文本的总词数}} P=生成文本的总词数匹配的词数,R=参考文本的总词数匹配的词数
  3. 调和平均

    • 对 P 和 R 使用 F1 分数加权:
      F = ( 1 + β 2 ) ⋅ P ⋅ R R + β 2 ⋅ P F = \frac{(1 + \beta^2) \cdot P \cdot R}{R + \beta^2 \cdot P} F=R+β2P(1+β2)PR
  4. 惩罚因子

    • 考虑词序对齐情况,加入惩罚因子 (P_{\text{penalty}}),对不连贯的匹配施加惩罚:
      Penalty = γ ⋅ ( chunk 数量 匹配词数 ) 3 \text{Penalty} = \gamma \cdot \left(\frac{\text{chunk 数量}}{\text{匹配词数}}\right)^3 Penalty=γ(匹配词数chunk 数量)3
  5. 最终分数
    METEOR = F ⋅ ( 1 − Penalty ) \text{METEOR} = F \cdot (1 - \text{Penalty}) METEOR=F(1Penalty)


4. Perplexity

目标:衡量语言模型生成文本的连贯性和预测能力,表示模型对句子的不确定性。

计算公式:
  • 对于语言模型给定的句子 w 1 , w 2 , … , w N w_1, w_2, \ldots, w_N w1,w2,,wN,Perplexity 定义为:
    Perplexity = 2 − 1 N ∑ i = 1 N log ⁡ 2 P ( w i ∣ w 1 , … , w i − 1 ) \text{Perplexity} = 2^{-\frac{1}{N} \sum_{i=1}^N \log_2 P(w_i | w_1, \ldots, w_{i-1})} Perplexity=2N1i=1Nlog2P(wiw1,,wi1)
解释:
  1. 概率计算

    • P ( w i ∣ w 1 , … , w i − 1 ) P(w_i | w_1, \ldots, w_{i-1}) P(wiw1,,wi1) 表示模型预测第 i i i 个词的概率。
    • 高概率(模型更确定)对应低 Perplexity。
  2. 直观意义

    • Perplexity 越低,说明模型越能有效预测文本。
    • Perplexity 是对数似然的指数变换:
      Perplexity = exp ⁡ ( − 1 N ∑ i = 1 N log ⁡ P ( w i ) ) \text{Perplexity} = \exp\left(-\frac{1}{N} \sum_{i=1}^N \log P(w_i)\right) Perplexity=exp(N1i=1NlogP(wi))

相关文章:

语言模型评价指标

1. BLEU(Bilingual Evaluation Understudy) 目标:衡量生成文本和参考文本之间的词汇相似性。 计算步骤: N-gram 匹配: 将生成文本和参考文本分解成 1-gram、2-gram、…、N-gram(通常取到 4-gram&#xff…...

工程师 - MSYS2介绍

https://www.msys2.org/ MSYS2 是一系列工具和库,为您提供了一个易于使用的环境,用于构建、安装和运行本地 Windows 软件。 MSYS2 is a collection of tools and libraries providing you with an easy-to-use environment for building, installing an…...

算法基础三:插入排序

定义 插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用…...

小米汽车加速出海,官网建设引领海外市场布局!

面对国内市场的饱和态势,中国企业出海步伐纷纷加速,小米也是其中的一员。Canalys数据显示,2024年第三季度,小米以13.8%的市场份额占比,实现了连续17个季度位居全球前三的成绩。 据“36 氪汽车”报道,小米汽…...

Python Polars快速入门指南:LazyFrames

前文已经介绍了Polars的Dataframe, Contexts 和 Expressions,本文继续介绍Polars的惰性API。惰性API是该库最强大的功能之一,使用惰性API可以设定一系列操作,而无需立即运行它们。相反,这些操作被保存为计算图,只在必要…...

什么是网络安全(Cybersecurity)?

不同组织机构对网络安全(Cybersecurity或Cyber Security)的定义不尽相同。从目标上来说,网络安全主要用于保护网络、计算机、移动设备、应用程序及数据等资产免受网络攻击,避免造成数据泄露、业务中断等安全问题。 网络钓鱼、勒索…...

VBA批量插入图片到PPT,一页一图

Sub InsertPicturesIntoSlides()Dim pptApp As ObjectDim pptPres As ObjectDim pptSlide As ObjectDim strFolderPath As StringDim strFileName As StringDim i As Integer 设置图片文件夹路径strFolderPath "C:\您的图片文件夹路径\" 请替换为您的图片文件夹路径…...

Pandas-DataFrame入门

文章目录 一. Pandas DataFrame简介二. 加载数据集1. 目的2. 步骤① 导包② 加载csv③ 查看数据类型及属性④ Pandas与Python常用数据类型对照 三. 查看部分数据1. 根据列名加载部分列数据① 加载一列数据,通过df[列名]方式获取② 加载多列数据,通过df[[…...

爬虫 - 爬取王者荣耀所有皮肤图片

结果展示 安装 pip install requests logger代码 import json import os import re from concurrent.futures import ThreadPoolExecutorimport requests from loguru import loggerdef parse_url(url, bFalse):try:headers {"User-Agent": "Mozilla/5.0 (Wi…...

【畅购商城】购物车模块之查看购物车

目录 分析 接口 后端实现 前端实现:显示页面 前端实现:显示购物车信息 分析 用户如果没有登录,购物车存放在浏览器端的localStorage处,且以数组的方式进行存储。用户如果登录了,购物车存放在redis中&#xff0c…...

Spring Boot 学习笔记

学习代码第一步&#xff1a;如何写 Hello world &#xff1f; 1、新建项目 新建一个 Maven Java 工程&#xff0c;在 pom.xml 文件中添加 Spring Boot Maven 依赖&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spri…...

快速打造智能应用:从设计到上线的全流程指南

随着人工智能技术的快速发展&#xff0c;如何将大模型技术转化为实际应用成为了各行业关注的焦点。本文将以一个经典的 RAG&#xff08;检索增强生成&#xff09;知识问答系统为例&#xff0c;详细介绍从智能体设计到最终应用部署的全流程。通过结合阿里云的魔笔低代码平台和丰…...

Java-将一个大列表均分成多个小列表,每个小列表包含10个元素

要将一个大列表均分成多个小列表,每个小列表包含10个元素,可以使用多种方法。以下是几种常 见的方法: 方法一:使用 subList 这是你已经提到的方法,通过 subList 来获取子列表。 import java.util.ArrayList; import java.util.List;public class BatchProcessingExamp…...

tcp_rcv_synsent_state_process函数

tcp_rcv_synsent_state_process 是 Linux Kernel 中用于处理 TCP 连接在 SYN-SENT 状态下接收到报文的函数。这个函数在 TCP 三次握手阶段起到了至关重要的作用,处理了在客户端发送 SYN 请求之后收到服务器响应报文的各种情况。 以下是这个函数的解读和剖析: int tcp_rcv_sy…...

关于无线AP信道调整的优化(锐捷)

目录 一、信道优化的基本原则二、2.4G频段信道优化三、5G频段信道优化四、信道优化代码具体示例五、其他优化措施 一、信道优化的基本原则 信道优化旨在减少信道间的干扰&#xff0c;提高网络覆盖范围和信号质量。基本原则包括&#xff1a; 1. 选择合适的信道&#xff1a;根据…...

C#编写的金鱼趣味小应用 - 开源研究系列文章

今天逛网&#xff0c;在GitHub中文网上发现一个源码&#xff0c;里面有这个金鱼小应用&#xff0c;于是就下载下来&#xff0c;根据自己的C#架构模板进行了更改&#xff0c;最终形成了这个例子。 1、 项目目录&#xff1b; 2、 源码介绍&#xff1b; 1) 初始化&#xff1b; 将样…...

计算机网络|数据流向剖析与分层模型详解

文章目录 一、网络中的数据流向二、计算机网络通信模型1.OSI 模型2.TCP/IP 模型3.TCP/IP五层模型3.1 分层架构描述3.2各层地址结构3.3UDP数据包报头结构 三、总结 一、网络中的数据流向 在计算机网络中&#xff0c;数据的流向是指数据从发送端到接收端的传输路径。数据流向涉及…...

某些iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题

一些型号的iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题 延迟问题 navigator.mediaDevices.getUserMedia({ audio: true }) .then((stream) > {console.log(stream) }&#xff09;从开始到获取stream会有将近2s的延迟 导致按下按钮开始录音 会有前…...

gazebo_world 基本围墙。

如何使用&#xff1f; 参考gazebo harmonic的官方教程。 本人使用harmonic的template&#xff0c;在里面进行修改就可以分流畅地使用下去。 以下是world 文件. <?xml version"1.0" ?> <!--Try sending commands:gz topic -t "/model/diff_drive/…...

Ubuntu 上高效实现 Texlive 安装和管理

文章目录 介绍操作步骤1. 下载 Texlive 安装包2. 解压安装包3. 安装基础安装命令通用的 scheme 选项 4. 配置环境变量 使用 tlmgr 管理包总结 介绍 Texlive 是学术和技术文档编写的重要工具, 选择适合的安装方案能帮助您提升效率并减少磁盘空间占用. 本文将为您提供在 Ubuntu …...

LeetCOde914 卡牌分组

扑克牌分组问题&#xff1a;探索最大公约数的应用 在编程的世界里&#xff0c;我们经常会遇到各种有趣的算法问题&#xff0c;今天要和大家分享的是一道关于扑克牌分组的问题&#xff0c;它巧妙地运用了最大公约数的概念来解决。 一、问题描述 给定一副牌&#xff0c;每张牌…...

MicroDiffusion——采用新的掩码方法和改进的 Transformer 架构,实现了低预算的扩散模型

介绍 论文地址&#xff1a;https://arxiv.org/abs/2407.15811 现代图像生成模型擅长创建自然、高质量的内容&#xff0c;每年生成的图像超过十亿幅。然而&#xff0c;从头开始训练这些模型极其昂贵和耗时。文本到图像&#xff08;T2I&#xff09;扩散模型降低了部分计算成本&a…...

QWT 之 QwtPlotDirectPainter直接绘制

QwtPlotDirectPainter 是 Qwt 库中用于直接在 QwtPlot 的画布上绘制图形的一个类。它提供了一种高效的方法来实时更新图表&#xff0c;特别适合需要频繁更新的数据可视化应用&#xff0c;例如实时数据流的显示。 使用 QwtPlotDirectPainter 的主要优势在于它可以绕过 QwtPlot 的…...

埃斯顿机器人程序案例多个点位使用变量

多个点位使用变量取放...

【数据分析】贝叶斯定理

文章目录 一、贝叶斯定理的基本形式二、贝叶斯定理的推导三、贝叶斯定理的应用四、贝叶斯定理的优势与挑战 贝叶斯定理&#xff08;Bayes Theorem&#xff09;是概率论中的一个重要公式&#xff0c;它提供了一种根据已有信息更新事件发生概率的方式。贝叶斯定理的核心思想是通过…...

学AI编程的Prompt工程,marscode

利用marscode做个创意应用 Datawhale-AI活动 首先把自己的创意告诉marscode&#xff0c;marscode会针对你的创意开始写代码。如果在把创意给marscode前有更好的梳理&#xff0c;会有更好的结果。 对于一个新开始的项目&#xff0c;只需要点击apply进行应用 由于ai的效果不稳定…...

python中的与时间相关的模块

python中的与时间相关的模块 1. time 模块2. datetime 模块3. calendar 模块4. timeit 模块5. pytz 模块6. dateutil 模块参考资料 1. time 模块 time 模块提供了时间相关的函数&#xff0c;主要用于测量时间间隔、获取当前时间、格式化时间等 主要功能 获取当前时间&#xff…...

【Python运维】构建基于Python的自动化运维平台:用Flask和Celery

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在现代IT运维中,自动化运维平台扮演着至关重要的角色,它能够显著提高运维效率,减少人为错误,并且增强系统的可维护性。本文将引导读者如…...

Qt 12.28 day3

作业&#xff1a; 1】 思维导图 2】 在登录界面的登录取消按钮进行以下设置&#xff1a; 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&a…...

Java爬虫获取速卖通(AliExpress)商品详情

1. 环境准备 在开始编写爬虫之前&#xff0c;需要准备以下环境和工具&#xff1a; Java开发环境&#xff1a;确保你的计算机上安装了Java开发工具包&#xff08;JDK&#xff09;。IDE&#xff1a;选择一个Java集成开发环境&#xff0c;如IntelliJ IDEA、Eclipse等。第三方库&…...