VBA批量插入图片到PPT,一页一图
Sub InsertPicturesIntoSlides()Dim pptApp As ObjectDim pptPres As ObjectDim pptSlide As ObjectDim strFolderPath As StringDim strFileName As StringDim i As Integer' 设置图片文件夹路径strFolderPath = "C:\您的图片文件夹路径\" ' 请替换为您的图片文件夹路径' 获取文件夹中的第一个文件strFileName = Dir(strFolderPath & "*.jpg") ' 假设图片为jpg格式,如有需要请更改文件类型' 检查是否有图片If strFileName = "" ThenMsgBox "没有找到图片文件。"Exit SubEnd If' 创建PowerPoint应用对象Set pptApp = CreateObject("PowerPoint.Application")pptApp.Visible = True' 添加新的演示文稿Set pptPres = pptApp.Presentations.Addi = 1 ' 初始化幻灯片编号' 循环插入每张图片到新的幻灯片Do While strFileName <> ""' 添加新的幻灯片Set pptSlide = pptPres.Slides.Add(i, ppLayoutBlank)' 在新的幻灯片中插入图片With pptSlide.Shapes.AddPicture(FileName:=strFolderPath & strFileName, _LinkToFile:=msoFalse, _SaveWithDocument:=msoCTrue, _Left:=0, _Top:=0, _Width:=pptSlide.Master.Width, _Height:=pptSlide.Master.Height).LockAspectRatio = msoTrueEnd With' 获取下一个文件strFileName = Dir()i = i + 1Loop' 清理Set pptSlide = NothingSet pptPres = NothingSet pptApp = Nothing
End Sub
注意“宏安全性”设置,改为启用和信任

相关文章:
VBA批量插入图片到PPT,一页一图
Sub InsertPicturesIntoSlides()Dim pptApp As ObjectDim pptPres As ObjectDim pptSlide As ObjectDim strFolderPath As StringDim strFileName As StringDim i As Integer 设置图片文件夹路径strFolderPath "C:\您的图片文件夹路径\" 请替换为您的图片文件夹路径…...
Pandas-DataFrame入门
文章目录 一. Pandas DataFrame简介二. 加载数据集1. 目的2. 步骤① 导包② 加载csv③ 查看数据类型及属性④ Pandas与Python常用数据类型对照 三. 查看部分数据1. 根据列名加载部分列数据① 加载一列数据,通过df[列名]方式获取② 加载多列数据,通过df[[…...
爬虫 - 爬取王者荣耀所有皮肤图片
结果展示 安装 pip install requests logger代码 import json import os import re from concurrent.futures import ThreadPoolExecutorimport requests from loguru import loggerdef parse_url(url, bFalse):try:headers {"User-Agent": "Mozilla/5.0 (Wi…...
【畅购商城】购物车模块之查看购物车
目录 分析 接口 后端实现 前端实现:显示页面 前端实现:显示购物车信息 分析 用户如果没有登录,购物车存放在浏览器端的localStorage处,且以数组的方式进行存储。用户如果登录了,购物车存放在redis中,…...
Spring Boot 学习笔记
学习代码第一步:如何写 Hello world ? 1、新建项目 新建一个 Maven Java 工程,在 pom.xml 文件中添加 Spring Boot Maven 依赖: <parent><groupId>org.springframework.boot</groupId><artifactId>spri…...
快速打造智能应用:从设计到上线的全流程指南
随着人工智能技术的快速发展,如何将大模型技术转化为实际应用成为了各行业关注的焦点。本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。通过结合阿里云的魔笔低代码平台和丰…...
Java-将一个大列表均分成多个小列表,每个小列表包含10个元素
要将一个大列表均分成多个小列表,每个小列表包含10个元素,可以使用多种方法。以下是几种常 见的方法: 方法一:使用 subList 这是你已经提到的方法,通过 subList 来获取子列表。 import java.util.ArrayList; import java.util.List;public class BatchProcessingExamp…...
tcp_rcv_synsent_state_process函数
tcp_rcv_synsent_state_process 是 Linux Kernel 中用于处理 TCP 连接在 SYN-SENT 状态下接收到报文的函数。这个函数在 TCP 三次握手阶段起到了至关重要的作用,处理了在客户端发送 SYN 请求之后收到服务器响应报文的各种情况。 以下是这个函数的解读和剖析: int tcp_rcv_sy…...
关于无线AP信道调整的优化(锐捷)
目录 一、信道优化的基本原则二、2.4G频段信道优化三、5G频段信道优化四、信道优化代码具体示例五、其他优化措施 一、信道优化的基本原则 信道优化旨在减少信道间的干扰,提高网络覆盖范围和信号质量。基本原则包括: 1. 选择合适的信道:根据…...
C#编写的金鱼趣味小应用 - 开源研究系列文章
今天逛网,在GitHub中文网上发现一个源码,里面有这个金鱼小应用,于是就下载下来,根据自己的C#架构模板进行了更改,最终形成了这个例子。 1、 项目目录; 2、 源码介绍; 1) 初始化; 将样…...
计算机网络|数据流向剖析与分层模型详解
文章目录 一、网络中的数据流向二、计算机网络通信模型1.OSI 模型2.TCP/IP 模型3.TCP/IP五层模型3.1 分层架构描述3.2各层地址结构3.3UDP数据包报头结构 三、总结 一、网络中的数据流向 在计算机网络中,数据的流向是指数据从发送端到接收端的传输路径。数据流向涉及…...
某些iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题
一些型号的iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题 延迟问题 navigator.mediaDevices.getUserMedia({ audio: true }) .then((stream) > {console.log(stream) })从开始到获取stream会有将近2s的延迟 导致按下按钮开始录音 会有前…...
gazebo_world 基本围墙。
如何使用? 参考gazebo harmonic的官方教程。 本人使用harmonic的template,在里面进行修改就可以分流畅地使用下去。 以下是world 文件. <?xml version"1.0" ?> <!--Try sending commands:gz topic -t "/model/diff_drive/…...
Ubuntu 上高效实现 Texlive 安装和管理
文章目录 介绍操作步骤1. 下载 Texlive 安装包2. 解压安装包3. 安装基础安装命令通用的 scheme 选项 4. 配置环境变量 使用 tlmgr 管理包总结 介绍 Texlive 是学术和技术文档编写的重要工具, 选择适合的安装方案能帮助您提升效率并减少磁盘空间占用. 本文将为您提供在 Ubuntu …...
LeetCOde914 卡牌分组
扑克牌分组问题:探索最大公约数的应用 在编程的世界里,我们经常会遇到各种有趣的算法问题,今天要和大家分享的是一道关于扑克牌分组的问题,它巧妙地运用了最大公约数的概念来解决。 一、问题描述 给定一副牌,每张牌…...
MicroDiffusion——采用新的掩码方法和改进的 Transformer 架构,实现了低预算的扩散模型
介绍 论文地址:https://arxiv.org/abs/2407.15811 现代图像生成模型擅长创建自然、高质量的内容,每年生成的图像超过十亿幅。然而,从头开始训练这些模型极其昂贵和耗时。文本到图像(T2I)扩散模型降低了部分计算成本&a…...
QWT 之 QwtPlotDirectPainter直接绘制
QwtPlotDirectPainter 是 Qwt 库中用于直接在 QwtPlot 的画布上绘制图形的一个类。它提供了一种高效的方法来实时更新图表,特别适合需要频繁更新的数据可视化应用,例如实时数据流的显示。 使用 QwtPlotDirectPainter 的主要优势在于它可以绕过 QwtPlot 的…...
埃斯顿机器人程序案例多个点位使用变量
多个点位使用变量取放...
【数据分析】贝叶斯定理
文章目录 一、贝叶斯定理的基本形式二、贝叶斯定理的推导三、贝叶斯定理的应用四、贝叶斯定理的优势与挑战 贝叶斯定理(Bayes Theorem)是概率论中的一个重要公式,它提供了一种根据已有信息更新事件发生概率的方式。贝叶斯定理的核心思想是通过…...
学AI编程的Prompt工程,marscode
利用marscode做个创意应用 Datawhale-AI活动 首先把自己的创意告诉marscode,marscode会针对你的创意开始写代码。如果在把创意给marscode前有更好的梳理,会有更好的结果。 对于一个新开始的项目,只需要点击apply进行应用 由于ai的效果不稳定…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
