Pandas-DataFrame入门
文章目录
- 一. Pandas DataFrame简介
- 二. 加载数据集
- 1. 目的
- 2. 步骤
- ① 导包
- ② 加载csv
- ③ 查看数据类型及属性
- ④ Pandas与Python常用数据类型对照
- 三. 查看部分数据
- 1. 根据列名加载部分列数据
- ① 加载一列数据,通过df['列名']方式获取
- ② 加载多列数据,通过df[['列名1','列名2',...]]
- 2. 按行加载部分数据
- ① head()
- ③ tail()
- ② loc:通过行索引获取指定行数据
- ④ loc:通过索引标签获取指定多行数据
- ⑤ iloc:通过行号获取行数据
- 3. 获取指定行/列数据
- ① loc和iloc属性既可以用于获取列数据,也可以用于获取行数据
- ② 使用 loc 获取数据中的1列/几列
- ③ 使用 iloc 获取数据中的1列/几列
- ④ 如果loc 和 iloc 传入的参数弄混了,会报错
- ⑤ 通过range 生成序号,结合iloc 获取连续多列数据
- ⑥ 在 iloc中使用切片语法获取几列数据
- ⑦ 使用 loc/iloc 获取指定行,指定列的数据
- ⑧ 获取多行多列
- 四. 分组和聚合计算
- 1. 分组和聚合介绍
- 2. 分组方式
- 3. 分组频数计算
- 五. 基本绘图
一. Pandas DataFrame简介
- Pandas是用于数据分析的开源Python库,可以实现数据加载,清洗,转换,统计处理,可视化等功能
- DataFrame和Series是Pandas最基本的两种数据结构
- DataFrame用来处理结构化数据(SQL数据表,Excel表格)
- Series用来处理单列数据,也可以把DataFrame看作由Series对象组成的字典或集合
二. 加载数据集
1. 目的
- 做数据分析首先要加载数据,并查看其结构和内容,对数据有初步的了解
- 查看行,列数据分布情况
- 查看每一列中存储信息的类型
2. 步骤
① 导包

② 加载csv
df = pd.read_csv('data/scientists.csv')
df.head()

csv文件:Comma-Separated Values
也可以通过指定分隔符加载tsv文件
df = pd.read_csv('data/scientists.tsv', sep='\t')
df.head()
tsv文件 Tab-Separated Values
③ 查看数据类型及属性
-
查看df类型
type(df)pandas.core.frame.DataFrame -
查看df的shape属性,可以获取DataFrame的行数,列数
df.shape(8, 5) -
查看df的columns属性,获取DataFrame中的列名
df.columnsIndex(['Name', 'Born', 'Died', 'Age', 'Occupation'], dtype='object')df.indexIndex(['Name', 'Born', 'Died', 'Age', 'Occupation'], dtype='object') -
查看df的dtypes属性,获取每一列的数据类型
df.dtypesName objectBorn objectDied objectAge int64Occupation objectdtype: objectdf.info()
df.info()
df.describe()
④ Pandas与Python常用数据类型对照

三. 查看部分数据
1. 根据列名加载部分列数据
① 加载一列数据,通过df[‘列名’]方式获取
df = pd.read_csv('data/nobel_prizes.csv')
df

country_df = df['category']
country_df

② 加载多列数据,通过df[[‘列名1’,‘列名2’,…]]
注意这里是两层[] 可以理解为 df[列名的list]
subset = df[['category','year']]
subset

2. 按行加载部分数据
① head()
df.head()

③ tail()
df.tail(n=1)

② loc:通过行索引获取指定行数据
行索引介绍
先打印前5行数据 观察第一列
print(df.head())
最左边一列是行号,也就是DataFrame的行索引
Pandas默认使用行号作为行索引
loc属性传入行索引,来获取DataFrame的部分数据(一行,或多行)
④ loc:通过索引标签获取指定多行数据
df.loc[0]
df.loc[99]
last_row_index = df.index[-1]
df.loc[last_row_index]

⑤ iloc:通过行号获取行数据
在当前案例中,使用iloc 和 loc效果是一样的
需要注意的是,iloc传入的是索引的序号,loc是索引的标签
使用iloc时可以传入-1来获取最后一行数据,使用loc的时候不行
df.iloc[-1]

3. 获取指定行/列数据
① loc和iloc属性既可以用于获取列数据,也可以用于获取行数据
df.loc[[行],[列]]
df.iloc[[行],[列]]
df = pd.read_csv('data/scientists.csv')
df

df.loc[[0],['Name']]

df.iloc[[0],[0]]

② 使用 loc 获取数据中的1列/几列
df.loc[[所有行],[列名]]
取出所有行,可以使用切片语法 df.loc[ : , [列名]]
df.loc[:,['Name']]

df.loc[:,['Name','Age']]

③ 使用 iloc 获取数据中的1列/几列
df.iloc[:,[列序号]] # 列序号可以使用-1代表最后一列
df.iloc[:,[1,3,-1]]

④ 如果loc 和 iloc 传入的参数弄混了,会报错
loc 只能接受行/列 的名字,
iloc只能接受行/列的序号


⑤ 通过range 生成序号,结合iloc 获取连续多列数据
tmp_range = list(range(4))
print(tmp_range)
df.iloc[:, tmp_range]

tmp_range = list(range(1,3))
print(tmp_range)
df.iloc[:, tmp_range]

⑥ 在 iloc中使用切片语法获取几列数据
顾头不顾尾
df.iloc[:,2:4]

df.iloc[:,0:4:2]

⑦ 使用 loc/iloc 获取指定行,指定列的数据
df.loc[0,'Name']
df.iloc[0,0]
'Rosaline Franklin'
⑧ 获取多行多列
df.loc[2:6,['Name','Age']]

df.iloc[2:6,[0,3]]

四. 分组和聚合计算
1. 分组和聚合介绍
- 在我们使用Excel或者SQL进行数据处理时,Excel和SQL都提供了基本的统计计算功能
- 当我们再次查看gapminder数据的时候,可以根据数据提出几个问题
- 每一年的平均预期寿命是多少?每一年的平均人口和平均GDP是多少?
- 如果我们按照大洲来计算,每年个大洲的平均预期寿命,平均人口,平均GDP情况又如何?
- 在数据中,每个大洲列出了多少个国家和地区?
2. 分组方式
- 对于上面提出的问题,需要进行分组-聚合计算
- 先将数据分组(每一年的平均预期寿命问题 按照年份将相同年份的数据分成一组)
- 对每组的数据再去进行统计计算如,求平均,求每组数据条目数(频数)等
- 再将每一组计算的结果合并起来
- 可以使用DataFrame的groupby方法完成分组/聚合计算
df.groupby('year')['lifeExp'].mean()

- 将前面一行代码拆开,逐步分析
- 通过df.groupby(‘year’)先创一个分组对象
- 从分组之后的数据DataFrameGroupBy中,传入列名进行进一步计算
- 返回结果为一个 SeriesGroupBy ,其内容是分组后的数据
- 对分组后的数据计算平均值
如果想对多列值进行分组聚合代码也类似
df.groupby(['year','continent'])['lifeExp','gdpPercap'].mean()

3. 分组频数计算
- 在数据分析中,一个常见的任务是计算频数
- 可以使用 nunique 方法 计算Pandas Series的唯一值计数
- 可以使用 value_counts 方法来获取Pandas Series 的频数统计
- 在数据中,每个大洲列出了多少个国家和地区?
df.groupby('continent')['country'].nunique()

df.groupby('continent')['country'].unique()

df['country'].value_counts()

五. 基本绘图
视化在数据分析的每个步骤中都非常重要
在理解或清理数据时,可视化有助于识别数据中的趋势
df.groupby('year')['lifeExp'].mean().plot()

相关文章:
Pandas-DataFrame入门
文章目录 一. Pandas DataFrame简介二. 加载数据集1. 目的2. 步骤① 导包② 加载csv③ 查看数据类型及属性④ Pandas与Python常用数据类型对照 三. 查看部分数据1. 根据列名加载部分列数据① 加载一列数据,通过df[列名]方式获取② 加载多列数据,通过df[[…...
爬虫 - 爬取王者荣耀所有皮肤图片
结果展示 安装 pip install requests logger代码 import json import os import re from concurrent.futures import ThreadPoolExecutorimport requests from loguru import loggerdef parse_url(url, bFalse):try:headers {"User-Agent": "Mozilla/5.0 (Wi…...
【畅购商城】购物车模块之查看购物车
目录 分析 接口 后端实现 前端实现:显示页面 前端实现:显示购物车信息 分析 用户如果没有登录,购物车存放在浏览器端的localStorage处,且以数组的方式进行存储。用户如果登录了,购物车存放在redis中,…...
Spring Boot 学习笔记
学习代码第一步:如何写 Hello world ? 1、新建项目 新建一个 Maven Java 工程,在 pom.xml 文件中添加 Spring Boot Maven 依赖: <parent><groupId>org.springframework.boot</groupId><artifactId>spri…...
快速打造智能应用:从设计到上线的全流程指南
随着人工智能技术的快速发展,如何将大模型技术转化为实际应用成为了各行业关注的焦点。本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。通过结合阿里云的魔笔低代码平台和丰…...
Java-将一个大列表均分成多个小列表,每个小列表包含10个元素
要将一个大列表均分成多个小列表,每个小列表包含10个元素,可以使用多种方法。以下是几种常 见的方法: 方法一:使用 subList 这是你已经提到的方法,通过 subList 来获取子列表。 import java.util.ArrayList; import java.util.List;public class BatchProcessingExamp…...
tcp_rcv_synsent_state_process函数
tcp_rcv_synsent_state_process 是 Linux Kernel 中用于处理 TCP 连接在 SYN-SENT 状态下接收到报文的函数。这个函数在 TCP 三次握手阶段起到了至关重要的作用,处理了在客户端发送 SYN 请求之后收到服务器响应报文的各种情况。 以下是这个函数的解读和剖析: int tcp_rcv_sy…...
关于无线AP信道调整的优化(锐捷)
目录 一、信道优化的基本原则二、2.4G频段信道优化三、5G频段信道优化四、信道优化代码具体示例五、其他优化措施 一、信道优化的基本原则 信道优化旨在减少信道间的干扰,提高网络覆盖范围和信号质量。基本原则包括: 1. 选择合适的信道:根据…...
C#编写的金鱼趣味小应用 - 开源研究系列文章
今天逛网,在GitHub中文网上发现一个源码,里面有这个金鱼小应用,于是就下载下来,根据自己的C#架构模板进行了更改,最终形成了这个例子。 1、 项目目录; 2、 源码介绍; 1) 初始化; 将样…...
计算机网络|数据流向剖析与分层模型详解
文章目录 一、网络中的数据流向二、计算机网络通信模型1.OSI 模型2.TCP/IP 模型3.TCP/IP五层模型3.1 分层架构描述3.2各层地址结构3.3UDP数据包报头结构 三、总结 一、网络中的数据流向 在计算机网络中,数据的流向是指数据从发送端到接收端的传输路径。数据流向涉及…...
某些iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题
一些型号的iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题 延迟问题 navigator.mediaDevices.getUserMedia({ audio: true }) .then((stream) > {console.log(stream) })从开始到获取stream会有将近2s的延迟 导致按下按钮开始录音 会有前…...
gazebo_world 基本围墙。
如何使用? 参考gazebo harmonic的官方教程。 本人使用harmonic的template,在里面进行修改就可以分流畅地使用下去。 以下是world 文件. <?xml version"1.0" ?> <!--Try sending commands:gz topic -t "/model/diff_drive/…...
Ubuntu 上高效实现 Texlive 安装和管理
文章目录 介绍操作步骤1. 下载 Texlive 安装包2. 解压安装包3. 安装基础安装命令通用的 scheme 选项 4. 配置环境变量 使用 tlmgr 管理包总结 介绍 Texlive 是学术和技术文档编写的重要工具, 选择适合的安装方案能帮助您提升效率并减少磁盘空间占用. 本文将为您提供在 Ubuntu …...
LeetCOde914 卡牌分组
扑克牌分组问题:探索最大公约数的应用 在编程的世界里,我们经常会遇到各种有趣的算法问题,今天要和大家分享的是一道关于扑克牌分组的问题,它巧妙地运用了最大公约数的概念来解决。 一、问题描述 给定一副牌,每张牌…...
MicroDiffusion——采用新的掩码方法和改进的 Transformer 架构,实现了低预算的扩散模型
介绍 论文地址:https://arxiv.org/abs/2407.15811 现代图像生成模型擅长创建自然、高质量的内容,每年生成的图像超过十亿幅。然而,从头开始训练这些模型极其昂贵和耗时。文本到图像(T2I)扩散模型降低了部分计算成本&a…...
QWT 之 QwtPlotDirectPainter直接绘制
QwtPlotDirectPainter 是 Qwt 库中用于直接在 QwtPlot 的画布上绘制图形的一个类。它提供了一种高效的方法来实时更新图表,特别适合需要频繁更新的数据可视化应用,例如实时数据流的显示。 使用 QwtPlotDirectPainter 的主要优势在于它可以绕过 QwtPlot 的…...
埃斯顿机器人程序案例多个点位使用变量
多个点位使用变量取放...
【数据分析】贝叶斯定理
文章目录 一、贝叶斯定理的基本形式二、贝叶斯定理的推导三、贝叶斯定理的应用四、贝叶斯定理的优势与挑战 贝叶斯定理(Bayes Theorem)是概率论中的一个重要公式,它提供了一种根据已有信息更新事件发生概率的方式。贝叶斯定理的核心思想是通过…...
学AI编程的Prompt工程,marscode
利用marscode做个创意应用 Datawhale-AI活动 首先把自己的创意告诉marscode,marscode会针对你的创意开始写代码。如果在把创意给marscode前有更好的梳理,会有更好的结果。 对于一个新开始的项目,只需要点击apply进行应用 由于ai的效果不稳定…...
python中的与时间相关的模块
python中的与时间相关的模块 1. time 模块2. datetime 模块3. calendar 模块4. timeit 模块5. pytz 模块6. dateutil 模块参考资料 1. time 模块 time 模块提供了时间相关的函数,主要用于测量时间间隔、获取当前时间、格式化时间等 主要功能 获取当前时间ÿ…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
Python爬虫实战:研究Restkit库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...
【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...
