当前位置: 首页 > news >正文

数据采集背后的效率革命:如何优化你的爬虫性能

在爬虫技术日益发展的今天,性能优化成为提升数据采集效率的关键。面对日益复杂的网页结构和庞大的数据量,高效的爬虫能够显著降低运行时间和资源成本。本文将围绕爬虫性能优化的核心方法展开讨论,并通过实例对比多进程、多线程以及普通爬取的效率。


一、为什么爬虫需要优化性能?
  1. 节省时间:减少任务完成所需的时间,尤其在处理大规模数据时尤为重要。

  2. 降低成本:高效的爬虫能减少服务器资源消耗,降低运行费用。

  3. 应对限制:优化爬虫能够规避部分反爬机制,如超时限制或请求频率限制。

  4. 提升稳定性:优化后的代码更健壮,能够在高并发环境中稳定运行。


二、常见的爬虫性能优化方法
  1. 使用并发技术

    • 多线程:适用于 I/O 密集型任务,如网络请求。

    • 多进程:适用于 CPU 密集型任务,如数据计算。

    • 异步编程:结合 asyncio 实现高并发请求。

  2. 分布式爬虫

    • 使用工具如 Scrapy-Redis,将任务分布到多台机器上。

  3. 代理池管理

    • 动态切换 IP,规避 IP 封禁。

  4. 减少重复请求

    • 设置缓存机制,避免对相同 URL 重复请求。

  5. 优化代码逻辑

    • 减少不必要的操作,精简解析逻辑。


三、性能对比实例:普通爬取 vs 多线程 vs 多进程

为了直观展示不同方法的效率,我们将使用一个模拟爬取任务。任务内容包括对 10 个目标执行请求操作,模拟请求耗时为 1 秒(通过 time.sleep(1) 实现)。

代码实现如下:

import time
from multiprocessing import Pool
from threading import Thread# 模拟爬取任务
def fetch_data(task_id):time.sleep(1)  # 模拟耗时1秒的爬取任务# 1. 普通方式爬取
def sequential_crawl():start_time = time.time()for i in range(10):fetch_data(i)end_time = time.time()print(f"普通爬取总耗时:{end_time - start_time:.2f} 秒")# 2. 多线程爬取
def threaded_crawl():start_time = time.time()threads = []for i in range(10):thread = Thread(target=fetch_data, args=(i,))threads.append(thread)thread.start()for thread in threads:thread.join()end_time = time.time()print(f"多线程爬取总耗时:{end_time - start_time:.2f} 秒")# 3. 多进程爬取
def multiprocess_crawl():start_time = time.time()with Pool(10) as pool:  # 创建10个进程pool.map(fetch_data, range(10))end_time = time.time()print(f"多进程爬取总耗时:{end_time - start_time:.2f} 秒")if __name__ == "__main__":sequential_crawl()threaded_crawl()multiprocess_crawl()

运行结果对比:

  • 普通方式:每个任务依次执行,总耗时 10.05 秒。

  • 多线程:多个任务同时执行,总耗时 1.02 秒(受限于线程切换和 GIL)。

  • 多进程:多个任务并行处理,总耗时约 1.61 秒(进程间资源独立)。


四、如何选择适合的并发方式?
  1. 多线程与多进程的区别

    • 多线程:多个线程运行在同一个进程内,适合 I/O 密集型任务(如网络请求、文件操作),但由于 Python 的全局解释器锁(GIL),多线程不能真正并行执行 CPU 密集型任务。

    • 多进程:每个进程都有独立的内存空间,适合 CPU 密集型任务(如图像处理、复杂计算),可以充分利用多核 CPU,但创建和切换进程的开销较大。

  2. I/O 密集型任务(如网络请求、文件读取):

    • 推荐使用多线程或异步编程。

  3. CPU 密集型任务(如数据计算、图像处理):

    • 推荐使用多进程。

  4. 综合场景

    • 根据任务特点,选择混合使用多线程和多进程。


五、优化建议
  1. 减少等待时间

    • 使用异步库(如 aiohttp)替代同步请求。

  2. 设置合理的并发数

    • 避免因过高的并发导致服务器拒绝服务或本地资源耗尽。

  3. 监控性能瓶颈

    • 借助工具(如 cProfiletimeit)分析代码性能,优化关键路径。

  4. 分布式架构

    • 对于超大规模爬取任务,可以使用分布式爬虫框架(如 Scrapy 和 Kafka 结合)。


六、结语

爬虫性能优化是提升数据采集效率的重要手段。通过合理选择并发技术,精简代码逻辑,并结合分布式架构,开发者可以显著提高爬取效率,为后续的数据分析和处理打下坚实基础。

相关文章:

数据采集背后的效率革命:如何优化你的爬虫性能

在爬虫技术日益发展的今天,性能优化成为提升数据采集效率的关键。面对日益复杂的网页结构和庞大的数据量,高效的爬虫能够显著降低运行时间和资源成本。本文将围绕爬虫性能优化的核心方法展开讨论,并通过实例对比多进程、多线程以及普通爬取的…...

【Compose multiplatform教程06】用IDEA编译Compose Multiplatform常见问题

当我们从Kotlin Multiplatform Wizard | JetBrains 下载ComposeMultiplatform项目时 会遇到无法正常编译/运行的情况,一般网页和桌面是可以正常编译的, 我这里着重解决如下问题 1:Gradle版本不兼容或者Gradle连接超时 2:JDK版本不兼容 3:Gradle依赖库连…...

《计算机组成及汇编语言原理》阅读笔记:p128-p132

《计算机组成及汇编语言原理》学习第 10 天,p128-p132 总结,总计 5 页。 一、技术总结 1.8088 organization and architecture 8088处理器是16位电脑,寄存器是16位,数据总线(data bus)是8位,地址总线是20位。 (1)g…...

使用 OpenCV 在图像中添加文字

在图像处理任务中,我们经常需要将文本添加到图像中。OpenCV 提供了 cv2.putText() 函数,可以很方便地在图像上绘制文本,支持多种字体、颜色、大小和位置等参数。 本文将详细介绍如何使用 OpenCV 在图像中添加文字,介绍 cv2.putTe…...

实现某海外大型车企(T)Cabin Wi-Fi 需求的概述 - 4

大家好,我是Q,邮箱:1042484520qq.com。 今天我们在上几讲的基础上再扩展下 Cabin Wi-Fi 的功能需求,讲讲如何使能 5G TCU Wi-Fi STA Bridge 模式。 参考: 实现某海外大型车企(T)Cabin Wi-Fi 需求…...

Linux系统:内核态与用户态的深层思考

背景: 我们学习Linux的系统调用经常会遇到一个概念:“内核态和用户态的切换”,一般人只会告诉你说这个切换代价很大,具体是什么情况?为什么需要切换?一定需要切换吗?怎么就会触发切换&#xff1…...

# 光速上手 - JPA 原生 sql DTO 投影

前言 使用 JPA 时,我们一般通过 Entity 进行实体类映射,从数据库中查询出对象。然而,在实际开发中,有时需要自定义查询结果并将其直接映射到 DTO,而不是实体类。这种需求可以通过 JPA 原生 SQL 查询和 DTO 投影 来实现…...

ASP.NET Web应用程序出现Maximum request length exceeded报错

一、问题描述 在ASP.NET的web应用中,导出数据时出现500 - Internal server error.Maximum request length exceeded。 二、原因分析 这个错误通常出现在Web应用程序中,表示客户端发送的HTTP请求的长度超过了服务器配置的最大请求长度限制。这可能是因为…...

HTML——16.相对路径

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title></title></head><body><a href"../../fj1/fj2/c.html" target"_blank">链接到c</a><!--相对路径&#xff1a;-->…...

windows 默认的消息ID有那些---我与大模型对话

前言&#xff1a; 与大模型交流&#xff0c;提问要尽量简短&#xff0c;突出关键词。否则它的回答就可能事是而非。用它总结和查资料还行&#xff0c;用它解决问题路还很远。它非常注重标准格式并机械的执行标准格式&#xff0c;并且事无巨细&#xff0c;不能灵活简要的回答问…...

CSV vs 数据库:爬虫数据存储的最佳选择是什么

介绍 在爬虫技术中&#xff0c;数据存储是一个不可缺少的环节。然而&#xff0c;选择合适的存储方式对数据分析和结果应用都致关重要。CSV和数据库是常用的两种存储方式&#xff0c;但它们各有优缺。这篇文章将分析两者在爬虫数据存储方面的选择值。 微博热搜是当前网络热点话…...

编译原理学习笔记——CH7-Runtime Environments运行时环境

本章重点&#xff1a; 为什么函数调用可以采用栈式存储&#xff1f; 函数调用和返回过程中需要记录哪些信息&#xff1f;如何记录&#xff1f; 主要知识点&#xff1a;  环境、状态、activation &#xff08;激活&#xff09; of procedures 、elaboration &#xff08;确立…...

机器学习DAY7: 特征工程和特征选择(数据预处理)(完)

本文通过特征提取、特征转换、特征选择三个过程介绍数据预处理方法&#xff0c;特征提取将原始数据转换为适合建模的特征&#xff0c;特征转换将数据进行变换以提高算法的准确性&#xff0c;特征选择用来删除无用的特征。 知识点 特征提取特征转换特征选择 本次实验的一些示…...

vue3动态加载组件

如何在Vue3中动态加载组件 需求根据下拉框的值&#xff0c;加载不同的组件 新建文件aaa.vue&#xff0c;bbb.vue <template><div class"container">我是bbbb组件</div> </template><script lang"ts" setup name"taskPus…...

12.29 redis缓存一致性

更新操作 如果先更新数据库再更新缓存 先更新缓存再更新数据库 更新缓存为1 更新缓存尾2 更新数据库为2 更新数据库为1 那么最后缓存为2 数据库为1 数据不一致 先更新数据库&#xff0c;再更新缓存 数据库为1 数据库为2 缓存为2 缓存为1 还是不一致 于是这种情况我们改为将缓…...

SqlSugar配置连接达梦数据库集群

安装达梦数据库时&#xff0c;会自动在当前操作系统中创建dm_svc.conf文件&#xff0c;可以在其中配置集群信息&#xff0c;不同操作系统下的文件位置如下图所示&#xff1a;   dm_svc.conf文件内的数据分为全局配置区域、服务配置区域&#xff0c;以参考文献1中的示例说明&…...

评分模型在路网通勤习惯分析中的应用——提出问题(1)

1、问题的由来、目标和意义 最近一段时间和公司其它业务部门讨论时&#xff0c;发现一个有趣的交通路网问题&#xff0c;车辆从S点行驶到V点共用时40分钟&#xff0c;这段时间内路网中的卡口摄像头识别到了车辆通过的信息。如下图所示&#xff1a; 设计师需要通过这些有限的路…...

使用 OpenCV 绘制线条和矩形

OpenCV 是一个功能强大的计算机视觉库&#xff0c;它不仅提供了丰富的图像处理功能&#xff0c;还支持图像的绘制。绘制简单的几何图形&#xff08;如线条和矩形&#xff09;是 OpenCV 中常见的操作。在本篇文章中&#xff0c;我们将介绍如何使用 OpenCV 在图像上绘制线条和矩形…...

npm 切换镜像源

设置镜像源 npm config set registry https://mirrors.huaweicloud.com/repository/npm/ npm 官方原始镜像网址是&#xff1a;https://registry.npmjs.org/ 淘宝 NPM 镜像&#xff1a;https://registry.npm.taobao.org 阿里云 NPM 镜像&#xff1a;https://npm.aliyun.com 腾…...

CSS(四)display和float

display display 属性用于控制元素的显示类型&#xff0c;用的 display 值包括&#xff1a; block&#xff1a;块级元素 使元素成为块级元素&#xff0c;占据一整行&#xff0c;前后有换行宽度默认为父容器的 100%&#xff0c;可以设置宽高&#xff0c;支持 margin、padding、…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...