MLA:多头潜在注意力
MLA:多头潜在注意力
多头潜在注意力(MLA)机制是一种在深度学习模型中用于处理序列数据的注意力机制的改进形式,以下是对其原理和示例的详细介绍:
原理
- 低秩键值联合压缩:MLA机制利用低秩键值联合压缩来消除注意力模块中的某些计算,从而提高模型的运行速度和性能。在传统的注意力机制中,计算注意力得分时需要对查询、键和值进行大量的矩阵乘法运算,而MLA通过对键值进行低秩分解和联合压缩,减少了计算量和存储需求。
- 多头结构:与传统的多头注意力机制类似,MLA也采用多头结构,将输入序列分为多个头进行并行处理。每个头都有自己独立的查询、键和值变换矩阵,通过对不同头的结果进行拼接或加权求和,得到最终的注意力输出。这种多头结构可以让模型同时关注序列中的不同位置和不同特征,提高模型的表达能力。
- 潜在表示学习:MLA机制在计算注意力时引入了潜在表示学习,通过对键值的低秩分解和联合压缩,得到一组潜在表示向量。这些潜在表示向量可以捕捉到序列中的潜在结构和语义信息,从而更好地指导注意力的分配。在计算注意力得分时,
相关文章:
MLA:多头潜在注意力
MLA:多头潜在注意力 多头潜在注意力(MLA)机制是一种在深度学习模型中用于处理序列数据的注意力机制的改进形式,以下是对其原理和示例的详细介绍: 原理 低秩键值联合压缩:MLA机制利用低秩键值联合压缩来消除注意力模块中的某些计算,从而提高模型的运行速度和性能。在传…...
阿里云大模型ACP高级工程师认证模拟试题
阿里云大模型ACP高级工程师认证模拟试题 0. 引言1. 模拟试题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题多选题单选题单选题单选题多选题多选题单选题多选题单…...
游戏引擎学习第67天
reviewing “apron”概念以更新区域 我们正在进行模拟区域的扩展工作,目标是通过增加一个更大的区域来支持更丰富的互动,尤其是那些可能超出摄像机视野的内容。现有的模拟区域包括摄像机能看到的区域和其周围的环境区域,但为了保证更高效的游…...
Nginx知识详解(理论+实战更易懂)
目录 一、Nginx架构和安装 1.1 Nginx 概述 1.1.1 nginx介绍 1.1.2?Nginx 功能介绍 1.1.3?基础特性 1.1.4?Web 服务相关的功能 1.2?Nginx 架构和进程 1.2.1?Nginx 进程结构 1.2.2?Nginx 进程间通信 1.2.3?Nginx 启动和 HTTP 连接建立 1.2.4?HTTP 处理过程 1…...
# 【鸿蒙开发】多线程之Worker的使用
【鸿蒙开发】多线程之Worker的使用 文章目录 【鸿蒙开发】多线程之Worker的使用前言一、Worker的介绍二、注意事项三、Worker使用示例1.新建一个Worker2.主线程使用Worker3.子线程Worker的使用 四、效果展示 前言 本文主要介绍了多线程的方法之一,使用Worker开启多…...
TKG-DM – 基于Latent Diffusion模型的“原生”色度提取生成具有透明通道的图像
概述 原文地址:https://www.unite.ai/improving-green-screen-generation-for-stable-diffusion/ 论文地址:https://arxiv.org/pdf/2411.15580 尽管社区研究和投资者对图像生成人工智能充满热情,但此类系统的输出并不总是可以直接用于产品开…...
告别 Windows 迟缓!多维度优化策略开启流畅新体验
在日常使用 Windows 系统的过程中,随着时间推移和软件安装卸载,系统可能会出现运行缓慢、卡顿等问题。本文中简鹿办公将详细介绍一系列 Windows 系统优化方法,涵盖多个关键层面,助力您的电脑重焕生机。 一、磁盘清理与优化 磁盘…...
亚马逊国际站商品爬虫:Python实战指南
在数字化时代,数据的价值不言而喻。对于电商领域而言,获取竞争对手的商品信息、价格、评价等数据,对于市场分析和策略制定至关重要。本文将带你了解如何使用Python编写爬虫,以亚马逊国际站为例,按照关键字搜索并获取商…...
RabbitMQ基础篇之Java客户端快速入门
文章目录 需求 项目设置与依赖管理 配置RabbitMQ的连接信息创建队列与消息发送创建消费者(消息接收)环境准备与操作 需求 利用控制台创建队列 simple.queue在 publisher 服务中,利用 SpringAMQP 直接向 simple.queue 发送消息在 consumer 服…...
深度学习:基于MindSpore NLP的数据并行训练
什么是数据并行? 数据并行(Data Parallelism, DP)的核心思想是将大规模的数据集分割成若干个较小的数据子集,并将这些子集分配到不同的 NPU 计算节点上,每个节点运行相同的模型副本,但处理不同的数据子集。…...
Qt6之QML——枚举
在 QML 中,枚举 (Enumeration) 是一种用于定义一组固定值的功能。通过枚举,可以便捷地提供一组可选值,使用更加明确和精简。 一、枚举的特点 固定值定义: 枚举可以预先定义一组字面值,通常用于需要定义限制值范围的场景…...
ModiLeo交易平台:引领数字货币交易新未来
在当今数字化高速发展的时代,数字货币作为一种新兴的金融资产形式,正逐渐改变着全球金融格局。而此刻,由印度 ModiLeo 实验室联合全球顶级投行共同打造的全球领先的一站式数字货币交易平台——ModiLeo 即将上线,这无疑是数字货币领…...
[python SQLAlchemy数据库操作入门]-15.联合查询,跨表获取股票数据
哈喽,大家好,我是木头左! 在开始探讨如何利用SQLAlchemy实现复杂的联合查询之前,首先需要深入理解其核心组件——对象关系映射(ORM)。ORM允许开发者使用Python类来表示数据库中的表,从而以一种更直观、面向对象的方式来操作数据库。 SQLAlchemy中的JOIN操作详解 在SQLA…...
某网站手势验证码识别深入浅出(全流程)
注意,本文只提供学习的思路,严禁违反法律以及破坏信息系统等行为,本文只提供思路 如有侵犯,请联系作者下架 本文识别已同步上线至OCR识别网站: http://yxlocr.nat300.top/ocr/other/20 本篇文章包含经验和教训总结,我采用了两种方法进行识别,两种方法都各有优劣,其中一…...
在虚幻引擎4(UE4)中使用蓝图的详细教程
在虚幻引擎4(UE4)中使用蓝图的详细教程 虚幻引擎4(Unreal Engine 4,简称UE4)是一款功能强大的游戏引擎,广泛应用于游戏开发、虚拟现实、建筑可视化等领域。UE4 提供了一个强大的可视化脚本工具——蓝图&am…...
Junit如何禁用指定测试类,及使用场景
在JUnit中禁用指定测试类可以通过多种方式实现,具体取决于使用的JUnit版本(JUnit 4 或 JUnit 5)。以下是针对两个版本的详细说明以及它们可能的使用场景: JUnit 4 禁用整个测试类 可以使用Ignore注解来忽略整个测试类。这将导致…...
ICLR2015 | FGSM | 解释并利用对抗样本
Explaining and Harnessing Adversarial Examples 摘要-Abstract相关工作-Related Work对抗样本的线性解释-The Linear Explanation of Adversarial Examples非线性模型的线性扰动-Linear Pertubation of Non-Linear Models线性模型与权重衰减的对抗训练-Adversarial Training …...
Python 迭代器与生成器
Python 中的迭代器和生成器是处理集合元素的重要工具,它们在处理大量数据时特别有用,因为它们不需要一次性将所有数据加载到内存中。 迭代器(Iterator) 迭代器是一个实现了迭代器协议的对象,这意味着它有两个方法&am…...
MySQL数据库——索引结构之B+树
本文先介绍数据结构中树的演化过程,之后介绍为什么MySQL数据库选择了B树作为索引结构。 文章目录 树的演化为什么其他树结构不行?为什么不使用二叉查找树(BST)?为什么不使用平衡二叉树(AVL树)&a…...
3_TCP/IP连接三次握手与断开四次挥手
TCP/IP 通信是网络通信的基础协议,分为以下主要步骤: 1、建立连接(三次握手) 目的:保证双方建立可靠的通信连接。 过程: 1>客户端发送 SYN:客户端向服务器发送一个 SYN(同步&…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
