Day62 图论part11
Floyd 算法精讲
Floyd 算法代码很简单,但真正理解起原理 还是需要花点功夫,大家在看代码的时候,会发现 Floyd 的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。
代码随想录
方法1:三维dp数组
import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();int[][][] grid = new int[n+1][n+1][n+1];//grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为mfor(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){Arrays.fill(grid[i][j], Integer.MAX_VALUE);} grid[i][i][0] = 0;}for(int i = 0; i < m; i++){int u = sc.nextInt();int v = sc.nextInt();int w = sc.nextInt();grid[u][v][0] = w;grid[v][u][0] = w;}for(int k = 1; k <= n; k++){for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){if(grid[i][k][k-1] != Integer.MAX_VALUE && grid[k][j][k-1] != Integer.MAX_VALUE){grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);}else{grid[i][j][k] = grid[i][j][k-1];// grid[i][j][k]并不会继承grid[i][j][k-1],而是保留为初始值;}}}}int q = sc.nextInt();for(int i = 0; i < q; i++){int start = sc.nextInt();int end = sc.nextInt();if(grid[start][end][n] == Integer.MAX_VALUE){System.out.println(-1);}else{System.out.println(grid[start][end][n]); }}}} 方法2:二维dp数组
import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();int[][] grid = new int[n+1][n+1];//grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为mfor(int i = 1; i <= n; i++){Arrays.fill(grid[i], 10001);grid[i][i] = 0;}for(int i = 0; i < m; i++){int u = sc.nextInt();int v = sc.nextInt();int w = sc.nextInt();grid[u][v] = w;grid[v][u] = w;}for(int k = 1; k <= n; k++){for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){grid[i][j] = Math.min(grid[i][j], grid[i][k]+grid[k][j]);}}}int q = sc.nextInt();for(int i = 0; i < q; i++){int start = sc.nextInt();int end = sc.nextInt();if(grid[start][end] == 10001){System.out.println(-1);}else{System.out.println(grid[start][end]); }}}} 总结
1.确定dp数组(dp table)以及下标的含义:
//grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为m2
2.确定递推公式
第一种情况:不经过中间节点K,那么
grid[i][j][k] = grid[i][j][k-1]
第二种情况:经过中间节点K,那么
grid[i][j][k] = grid[i][k][k-1]+grid[k][j][k-1];
节点i 到 节点k 的最短距离 是不经过节点k,中间节点集合为[1...k-1],所以 表示为grid[i][k][k - 1]
节点k 到 节点j 的最短距离 也是不经过节点k,中间节点集合为[1...k-1],所以表示为 grid[k][j][k - 1]
grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);
3.dp数组如何初始化:需要初始化K=0的情况,K=0,就是两个节点直接相连,没有中间节点,所以直接赋值边的权值就可以了(双向或者无向需要两个方向初始化,有向图只要一个方向初始化)。然后其他对角元素应该初始化为0,其他元素初始化为边的权值的最大值(10001或者最大整形都可以,10001更加方便,后续不需要考虑溢出的情况)。
4.确定遍历顺序:
grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);
初始化的时候把 k =0 的 i 和j 对应的数值都初始化了,这样才能去计算 k = 1 的时候 i 和 j 对应的数值。这就好比是一个三维坐标,i 和j 是平层,而k是垂直向上的。遍历的顺序是从底向上 一层一层去遍历。所以遍历k 的for循环一定是在最外面,这样才能一层一层去遍历。k 依赖于 k - 1, i 和j 的到并不依赖与 i - 1 或者 j - 1 。所以一定是把k 的for循环放在最外面,才能用上 初始化和上一轮计算的结果了。i和j的遍历顺序就无所谓了。
5.二维的dp数组,就把k这一维度去掉。每次进入新的k,其实都保留着上一轮k的数值,靠着最外层的for循环,来实现对k的滚动。
6.Floyd 算法的时间复杂度相对较高,Floyd 算法适合多源最短路,即 求多个起点到多个终点的多条最短路径。适合 稠密图且源点较多的情况。时间复杂度: O(n^3);如果 源点少,其实可以 多次dijsktra 求源点到终点。Floyd 算法对边的权值正负没有要求,都可以处理。
A * 算法精讲 (A star算法)
一般 笔试或者 面试的时候,不会考察A*, 都是会结合具体业务场景问 A*算法,例如:地图导航,游戏开发 等等。其实基础版的A* 并不难,所以大家不要畏惧,理解本篇内容,甚至独立写出代码,大家可以做到,加油
A * 算法精讲 (A star算法) | 代码随想录
import java.util.*;public class Main {static int[][] moves = new int[1001][1001]; // 记录每个位置的移动次数static int[][] dir = { // 马的8个方向{-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}};static int b1, b2; // 目标位置的x, y坐标static class Knight implements Comparable<Knight> {int x, y, g, h, f;Knight(int x, int y, int g, int h) {this.x = x;this.y = y;this.g = g; // G = 从起点到该节点的路径消耗this.h = h; // H = 从该节点到终点的预估消耗this.f = g + h; // F = G + H}@Overridepublic int compareTo(Knight k) {return Integer.compare(this.f, k.f); // 按照f值从小到大排序}}// 欧拉距离的启发函数(不开根号以提高精度)static int heuristic(Knight k) {return (k.x - b1) * (k.x - b1) + (k.y - b2) * (k.y - b2);}static void astar(Knight start) {PriorityQueue<Knight> queue = new PriorityQueue<>();queue.add(start);while (!queue.isEmpty()) {Knight cur = queue.poll(); // 取出f值最小的节点// 如果到达目标位置,直接退出if (cur.x == b1 && cur.y == b2) {break;}for (int[] d : dir) {int nx = cur.x + d[0];int ny = cur.y + d[1];// 检查边界if (nx < 1 || nx > 1000 || ny < 1 || ny > 1000) {continue;}// 如果这个位置没有访问过if (moves[nx][ny] == 0) {moves[nx][ny] = moves[cur.x][cur.y] + 1; // 更新移动次数int g = cur.g + 5; // 马走日消耗固定为5int h = heuristic(new Knight(nx, ny, 0, 0));Knight next = new Knight(nx, ny, g, h);queue.add(next); // 加入优先队列}}}}public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt(); // 测试案例数量while (n-- > 0) {int a1 = sc.nextInt(), a2 = sc.nextInt(); // 起点坐标b1 = sc.nextInt();b2 = sc.nextInt(); // 终点坐标for (int[] row : moves) {Arrays.fill(row, 0); // 初始化moves数组}Knight start = new Knight(a1, a2, 0, heuristic(new Knight(a1, a2, 0, 0)));astar(start);System.out.println(moves[b1][b2]); // 输出结果}sc.close();}
} PriorityQueue<Knight> queue = new PriorityQueue<>();这个PriorityQueue 自动根据 compareTo 方法维护堆的性质或任何自定义比较器的实现。
@Overridepublic int compareTo(Person other) {return Integer.compare(this.age, other.age); // 按年龄升序排序}//反向比较
@Override
public int compareTo(Knight k) {return Integer.compare(k.f, this.f); // 交换位置,k 在前面
}
1.为什么按照 F 值排序?
- F = G + H 表示从起点经过当前节点到终点的总代价估计值。
- 按照 F 值排序能够保证优先探索 当前预估代价最小的路径,从而以最快的速度找到最优解。
示例解释
假设:
- 当前节点 A 的 G=2, H=5, 所以 F=2+5=7。
- 另一个节点 B 的 G=4, H=2, 所以 F=4+2=6。
如果只按照 H 值排序,会优先选择 A(H = 5):
- 但 A 的总代价 F=7,并不是最优路径。
按照 F 值排序,会优先选择 B(F = 6),更接近最终的最优路径。
核心思路就是从队列里面优先弹出F值更小的元素,那么使用优先级队列就可以做到。Java 的优先级队列 (PriorityQueue) 默认是小顶堆。这意味着在队列中,优先级最低的元素(数值最小的元素)会排在队首,即最先被弹出。
2.moves 数组的作用是 记录某个棋盘位置是否已经访问过,以及该位置从起点到当前的 步数。
3.Astar 是一种 广搜的改良版。 或者是 dijkstra 的改良版。如果是无权图(边的权值都是1) 那就用广搜。如果是有权图(边有不同的权值),优先考虑 dijkstra。Astar 关键在于 启发式函数, 也就是 影响 广搜或者 dijkstra 从 容器(队列)里取元素的优先顺序。
最短路算法总结篇
最各个最短路算法有个全面的了解
最短路算法总结篇 | 代码随想录
图论总结
图论总结篇 | 代码随想录
相关文章:
Day62 图论part11
Floyd 算法精讲 Floyd 算法代码很简单,但真正理解起原理 还是需要花点功夫,大家在看代码的时候,会发现 Floyd 的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。 代码随想…...
git clone 超时
git clone 超时 参考 https://blog.csdn.net/qq_45906972/article/details/142214187?utm_mediumdistribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0-142214187-blog-137158358.235v43pc_blog_bottom_relevance_base8&spm1001.2101.3001.…...
WPF编程excel表格操作
WPF编程excel表格操作 摘要NPOI安装封装代码测试代码 摘要 Excel操作几种方式 使用开源库NPOI(常用,操作丰富)使用Microsoft.Office.Interop.Excel COM组件(兼容性问题)使用OpenXml(效率高)使用OleDb(过时) NPOI安装 封装代码 using System; using System.IO; u…...
Day10补代码随想录 理论基础|232.用栈实现队列|225.用队列实现栈|20.有效的括号|1047.删除字符串中的所有相邻重复项
栈和队列理论基础 抽象认识 栈是先进后出(FIFO),队列是先进先出(LIFO) 队首(先进))队尾(后进)栈顶(后进)栈底(先进) 栈(Stack) 只在一端进行进出操作(只在一端进一端出)像个篮球框,取用篮球从一端进出。 /进栈 int a[1000];//足够大的栈空间 int top-1…...
【Devops】什么是Devops?(Development+Operations)和运维的区别?
DevOps(Development Operations)是一种将开发(Development)和运维(Operations)团队结合在一起的文化和实践,目的是通过自动化、协作和持续反馈来加快软件的开发、部署和运维的周期,…...
基于NodeMCU的物联网电灯控制系统设计
最终效果 基于NodeMCU的物联网电灯控制系统设计 小程序关灯 上图展现了小程序关灯过程的数据传输过程:用户下达关灯指令→小程序下发关灯指令→MQTT服务器接收关灯指令→下位机接收与处理关灯指令。 项目介绍 该项目是“物联网实验室监测控制系统设计(…...
Linux驱动开发 IIC I2C驱动 编写APP访问EEPROM AT24C02
在嵌入式开发中,I2C(Inter-Integrated Circuit)是一种常用的串行通信协议,广泛应用于与外设(如 EEPROM、传感器、显示屏等)进行数据交换。AT24C02 是一种常见的 I2C EEPROM 存储器,它提供 2Kbit…...
Linux应用软件编程-多任务处理(线程)
线程:轻量级的进程,线程的栈区独立(8M),与同一进程中的其他线程共用进程的堆区,数据区,文本区。 进程是操作系统资源分配的最小单位;线程是cpu任务调度的最小单位。 1. 线程的创建…...
VITUREMEIG | AR眼镜 算力增程
根据IDC发布的《2024年第三季度美国AR/VR市场报告》显示,美国市场AR/VR总出货量增长10.3%。其中,成立于2021年的VITURE增长速度令人惊艳,同比暴涨452.6%,成为历史上增长最快的AR/VR品牌。并在美国AR领域占据了超过50%的市场份额&a…...
Jenkins管理多版本python环境
场景:项目有用到python3.8和3.9,python环境直接安装在jenkins容器内。 1、进入jenkins容器 docker exec -it jenkins /bin/bash 2、安装前置编译环境 # 提前安装,以便接下来的配置操作 apt-get -y install gcc automake autoconf libtool ma…...
Flutter富文本实现学习
Flutter 代码如何实现一个带有富文本显示和交互的页面。 前置知识点学习 RealRichText RealRichText 和 ImageSpan 不是 Flutter 框架中内置的组件,而是自定义的组件或来自第三方库。这些组件的实现可以提供比标准 RichText 更丰富的功能,比如在富文本…...
如何解决 OpenAI API 连接问题:降级 urllib3 版本
如何解决 OpenAI API 连接问题:降级 urllib3 版本 在使用 OpenAI API 时,很多开发者可能会遇到连接问题,特别是在使用 Python 代码与 OpenAI 进行交互时。常见的错误包括 ProxyError、SSLError 和 MaxRetryError,它们通常表示在通…...
【C语言】库函数常见的陷阱与缺陷(三):内存分配函数[4]--free
C语言中的free函数用于释放之前通过malloc、calloc或realloc动态分配的内存。然而,在使用free函数时,开发者可能会遇到一些陷阱和缺陷。 一、功能与用法 free 函数是 C 语言中用于释放动态分配内存的关键函数。在程序使用 malloc、calloc 或 realloc 等函数在堆上分配了内存…...
论文分享 | PromptFuzz:用于模糊测试驱动程序生成的提示模糊测试
大语言模型拥有的强大能力可以用来辅助多种工作,但如何有效的辅助仍然需要人的精巧设计。分享一篇发表于2024年CCS会议的论文PromptFuzz,它利用模型提示生成模糊测试驱动代码,并将代码片段嵌入到LLVM框架中执行模糊测试。 论文摘要 制作高质…...
AWS K8s 部署架构
Amazon Web Services(AWS)提供了一种简化的Kubernetes(K8s)部署架构,使得在云环境中管理和扩展容器化应用变得更加容易。这个架构的核心是AWS EKS(Elastic Kubernetes Service),它是…...
JavaSE笔记(四)
Java泛型与集合类 在前面我们学习了最重要的类和对象,了解了面向对象编程的思想,注意,非常重要,面向对象是必须要深入理解和掌握的内容,不能草草结束。在本章节,我们会继续深入了解,从我们的泛型开始,再到我们的数据结构,最后再开始我们的集合类学习。 走进泛型 为…...
C语言基础——指针(5)
一. 函数指针变量 1. 函数指针变量的定义: 类比数组指针变量,数组指针变量是存放数组地址的变量,那么同理,函数指针变量就是存放函数地址的变量。 2. 创建函数指针变量: 函数是有地址的࿰…...
curl+openssl 踩坑笔记
curl编译:点击跳转 踩坑一 * SSL certificate problem: unable to get local issuer certificate * closing connection #0 curl: (60) SSL certificate problem: unable to get local issuer certificate More details here: https://curl.se/docs/sslcerts.html …...
Unity 实现Canvas显示3D物体
新建一个UI相机,选择渲染层为UI 将主相机的渲染层去掉UI层 、 将Canvas的RenderMode设置为Screen Space - Camera,将RenderCamera设置为UI相机 新建3D物体的UI父物体,并将3D物体的层级设置为UI层 适当的放缩3DObjParent,让3D物体能显示出来…...
【Docker命令】如何使用`docker exec`在容器内执行命令
大家好,今天我们来聊聊Docker容器管理中的一个非常有用的命令:docker exec。在日常工作中,我们经常需要在运行中的Docker容器内执行各种命令,docker exec正是帮助我们实现这一需求的利器。下面我将通过一个简单的例子,…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程
基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...
OPENCV图形计算面积、弧长API讲解(1)
一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积,这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能,常用的API…...
二叉树-144.二叉树的前序遍历-力扣(LeetCode)
一、题目解析 对于递归方法的前序遍历十分简单,但对于一位合格的程序猿而言,需要掌握将递归转化为非递归的能力,毕竟递归调用的时候会调用大量的栈帧,存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧,而非…...
简约商务通用宣传年终总结12套PPT模版分享
IOS风格企业宣传PPT模版,年终工作总结PPT模版,简约精致扁平化商务通用动画PPT模版,素雅商务PPT模版 简约商务通用宣传年终总结12套PPT模版分享:商务通用年终总结类PPT模版https://pan.quark.cn/s/ece1e252d7df...
