当前位置: 首页 > news >正文

【ArcGIS Pro】完整的nc文件整理表格模型构建流程及工具练习数据分享

学术科研啥的要用到很多数据,nc文件融合了时间空间数据是科研重要文件。之前分享过怎样将nc文件处理成栅格后整理成表格。小编的读者还是有跑不通整个流程的,再来做一篇总结篇,也分享下练习数据跟工具,如果还是弄不了的,联系小编有偿服务。

1、nc转栅格并投影

这个步骤是重要的一步,将nc文件转栅格,同时创建同名的文件夹(每年一个),将每年12个月的栅格数据存到文件夹里,定义投影。该模型要转多年的,直接用批处理即可。

27d97b06894344dba8878d270b3cb55e.png

2、批量裁剪、根据已有文件夹批量建文件夹、文件套文件批量裁剪

这三个模型是实现批量处理搭配使用的。

批量裁剪,我们要的数据是某个行政区域,上一步骤生成的tif,还需要挨个裁剪到相应的行政区域。

65ff30d9f6c8492788b3f448e28a6dcd.png

因为裁剪之后,文件夹的结构跟全国整体数据结构一致。将全国建立的各年文件夹再新建一个区域的文件夹。

2ba1707580c647229197d366fd837f59.png

由于总文件下——年份文件夹——月份tif,模型工具只能进行一次迭代。这个模型是结合批量裁剪再进行一次迭代。

7f15577b6c80420ebf3482bec57c3f04.png

3、xxxx降雨转表

区域的降雨tif,得处理成表格。

e4075b76fb0c4f4a9b169bc145e5d9ba.png

4、python再整合表格

之前文章:用numpy将nc批量转的降雨表格按市县整理成逐年逐月降雨。是用python的模块numpy整理区域的降雨,按年份整理区域的分月降雨。代码如下(有技术难度可有偿代做):

'''
将excel表格整理成,2003-2023年辽宁各市降雨量;
'''
import pandas as pd
import numpy as np# 外面2003到2023的数组
ex_z = []  # 读取的最终列表
for j in range(2003, 2024):# 先读取一个文件里的Excelwjj = 'G:\\rain\\liaoning\\pre_' + str(j)  # 你的文件夹路径ex = []for i in range(1, 13):# 文件路径file_path = wjj + "\\" + str(i) + ".xlsx"# 使用pandas读取xls文件df = pd.read_excel(file_path)ex1 = []# 读取每行成列表for index, row in enumerate(df.values.tolist()):# print(index)ex1.append([row[1], round(float(row[5]) / 10, 2)])  # 之前获取的是0.1mm降雨,转化为1mmex.append(ex1)ex_z.append(ex)# print(ex_z[0][0][0])
#
#
# 将列表转数组
a=np.array(ex_z)
# 转换轴
b=np.transpose(a,(0,2,1,3))# 将四维数组按年份写入Excel
c=b.tolist()
# print(c[0][0])
for i in range(len(c)):nian=str(2003+i)liem=['prov','city','city_type',nian+'01',nian+'02',nian+'03',nian+'04',nian+'05',nian+'06',nian+'07',nian+'08',nian+'09',nian+'10',nian+'11',nian+'12']x=c[i]prov='辽宁省'city_type='地级市'data=[]for j in range(len(x)):data.append([prov,x[j][0][0],city_type,x[j][0][1],x[j][1][1],x[j][2][1],x[j][3][1],x[j][4][1],x[j][5][1],x[j][6][1],x[j][7][1],x[j][8][1],x[j][9][1],x[j][10][1],x[j][11][1]])df=pd.DataFrame(data,columns=liem)df.to_excel(nian+'.xlsx', index=False)

下面是视频讲解。

nc转表格

练习数据及模型工具

d6800337c7e44bb5ad197645d0265b0b.png

 

相关文章:

【ArcGIS Pro】完整的nc文件整理表格模型构建流程及工具练习数据分享

学术科研啥的要用到很多数据,nc文件融合了时间空间数据是科研重要文件。之前分享过怎样将nc文件处理成栅格后整理成表格。小编的读者还是有跑不通整个流程的,再来做一篇总结篇,也分享下练习数据跟工具,如果还是弄不了的&#xff0…...

REDIS的集群

REDIS的集群模式: 主从模式:redis高可用的基础,哨兵和集群都是建立在此基础之上 特点: 主从模式和数据库的主从模式(工作模式)是一样的,主负责写入,然后把写入到数据同步到从&…...

酒店管理系统的设计与实现【源码+文档+部署讲解】

酒店管理系统的设计与实现 摘 要 中国经济近几年来取得蓬勃飞速发展,使得人民生活水平的要求和生活的质量有了很高的要求。因此人们对外出旅游和就餐的需求也越来越大。同时,随着我国科技水平的兴起和对互联网新时代的大力支持,酒店管理系统在…...

[论文阅读] (34)ESWA2024 基于SGDC的轻量级入侵检测系统

《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期…...

从社区共识到资本效能:解析SYNBO的去中心化投资协议创新

Web3 资本市场正处于深刻变革的关键节点。随着去中心化技术的不断进化,传统风险投资模式逐渐显现出效率、透明性与公平性等方面的局限性。而 SYNBO 的出现,为这一市场注入了全新的可能性。 作为新一代去中心化风险投资协议,SYNBO 不仅创新性地…...

一、数据库 Sqlite3 资料

SQLite3 教程 SQLite3 是一个轻量级的嵌入式数据库引擎,它不需要单独的服务器进程,数据库直接存储在磁盘文件中。Python 内置了 sqlite3 模块,可以方便地操作 SQLite 数据库。以下是 SQLite3 的详细教程。 1. SQLite3 简介 SQLite3 是一个自…...

Passlib库介绍及使用指南

什么是Passlib? Passlib是一个强大的Python密码哈希库,它支持多种哈希算法和工具。 Passlib不仅提供了易于使用的API,还集成了多种安全特性,如加盐、密钥派生函数等,广泛应用于用户账户系统、敏感数据保护和多因素认证…...

模型选择+过拟合欠拟合

训练误差和泛化误差 训练误差:模型在训练数据上的误差 泛化误差:模型在新数据上的误差 验证数据集:一个用来评估模型好坏的数据集 例如拿出50%的数据作为训练 测试数据集:只能用一次 K则交叉验证 在没有足够数据时使用 算法…...

绝美的数据处理图-三坐标轴-散点图-堆叠图-数据可视化图

clc clear close all %% 读取数据 load(MyColor.mat) %读取颜色包for iloop 1:25 %提取工作表数据data0(iloop) {readtable(data.xlsx,sheet,iloop)}; end%% 解析数据 countzeros(23,14); for iloop 1:25index(iloop) { cell2mat(table2array(data0{1,iloop}(1,1)))};data(i…...

损失函数-二分类和多分类

二分类和多分类的损失函数 二分类 损失函数 L ( y , y ^ ) − ( y l o g ( y ^ ) ) ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) -(ylog(\hat{y})) (1-y)log(1-\hat{y}) L(y,y^​)−(ylog(y^​))(1−y)log(1−y^​) 其中真实标签表示为y(取值为 0 或 1&#…...

汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型,识别率89.7%

汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型损坏: 前挡风玻璃(damage-front-windscreen ) 损坏的门 (damaged-d…...

从 Elastic 迁移到 Easysearch 指引

从 Elasticsearch 迁移到 Easysearch 需要考虑多个方面,这取决于当前使用的 Elasticsearch 版本、能容忍的停机时间、应用需求等。在此背景下,我们梳理了一下通用的升级指引,方便大家进行迁移工作。 迁移路径 Elasticsearch 版本快照兼容推…...

Yapi RCE 复现和批量编写

一、漏洞复现 首先祭出fofa,搜索语句为 app"yapi",但是为了避开国内,所以使用 app"yapi" && country"SG",SG为新加坡,结果如图 虽然有30页,但是能利用的可能也没几…...

【2024年-9月-21日-开源社区openEuler实践记录】PilotGo:简化运维管理的开源利器

开篇介绍 大家好,我是 fzr123。在运维领域摸爬滚打许久,我发现了PilotGo这个超实用的开源项目,它正悄然改变着运维人员处理日常任务的方式,为复杂的运维管理工作带来了极大的便利与效率提升。 技术亮点 1. 自动化运维任务编排 …...

ubuntu 20.04 国内源安装docker

先更新软件包,安装备要apt软件 # 更新软件包索引 sudo apt-get update# 安装需要的软件包以使apt能够通过HTTPS使用仓库 sudo apt-get install ca-certificates curl gnupg lsb-release使用阿里云源 # 添加阿里云官方GPG密钥 curl -fsSL http://mirrors.aliyun.co…...

比亚迪30亿教育慈善基金正式启动,助推中国科教进步

12月30日,比亚迪在深圳总部举行了30亿教育慈善基金启动仪式,比亚迪股份有限公司董事长兼总裁王传福与来自全国的35所高校代表及28所科技馆、博物馆代表共同启动比亚迪30亿教育慈善基金捐赠,推动中国科教进步。 捐资30亿教育慈善基金&#xf…...

【链表】重排链表,看似复杂实则并不简单~

文章目录 143. 重排链表解题思路 143. 重排链表 143. 重排链表 ​ 给定一个单链表 L 的头节点 head ,单链表 L 表示为: L0 → L1 → … → Ln - 1 → Ln​ 请将其重新排列后变为: L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …​ 不能…...

yakit-靶场-高级前端加解密与验签实战(for嵌套纯享版)

高级前端加解密与验签实战 一、前端验证签名(验签)表单:HMAC-SHA256 使用hmac-sha256的十六进制key值可以加密 与页面加密后的值相同 热加载: encryptData func(p) { //sha256key值key codec.DecodeHex("313233343132333…...

洛谷 P1328 [NOIP2014 提高组] 生活大爆炸版石头剪刀布

题解&#xff1a; #include<iostream> #include<vector> //定义二维数组&#xff0c;直接标识不同出法相应对应关系 int mark[5][5]{{0,-1,1,1,-1},{1,0,-1,1,-1},{-1,1,0,-1,1},{-1,-1,1,0,1},{1,1,-1,-1,0}}; void JudgeScore(int A,int B,int& countA,int&…...

NLP论文速读(NeurIPS 2024)|BERT作为生成式上下文学习者BERTs are Generative In-Context Learners

论文速读|BERTs are Generative In-Context Learners 论文信息&#xff1a; 简介&#xff1a; 本文探讨了在自然语言处理&#xff08;NLP&#xff09;领域中&#xff0c;上下文学习&#xff08;in-context learning&#xff09;的能力&#xff0c;这通常与因果语言模型&#x…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...