当前位置: 首页 > news >正文

pandas删除值全部为0的整行和整列,还有0.0,0.000000也要删除

Pandas 中,如果需要删除全部为 0 的行或列,可以通过 .all() 方法来判断行或列是否所有元素都为 0,然后删除这些行或列。


代码示例

示例数据:
import pandas as pd# 示例数据
data = {'A': [0, 2, 0, 4],'B': [0, 0, 0, 0],'C': [0, 10, 11, 12]
}
df = pd.DataFrame(data)print("原始数据:")
print(df)

输出:

   A  B   C
0  0  0   0
1  2  0  10
2  0  0  11
3  4  0  12

1. 删除全部为 0 的行

使用 .all(axis=1) 判断行是否所有值都为 0,然后通过布尔索引删除这些行。

# 删除全为 0 的行
df_cleaned = df.loc[~(df == 0).all(axis=1)]print("\n删除全为 0 的行:")
print(df_cleaned)
输出:
删除全为 0 的行:A  B   C
1  2  0  10
2  0  0  11
3  4  0  12

2. 删除全部为 0 的列

使用 .all(axis=0) 判断列是否所有值都为 0,然后通过布尔索引删除这些列。

# 删除全为 0 的列
df_cleaned = df.loc[:, ~(df == 0).all(axis=0)]print("\n删除全为 0 的列:")
print(df_cleaned)
输出:
删除全为 0 的列:A   C
0  0   0
1  2  10
2  0  11
3  4  12

3. 同时删除全部为 0 的行和列

可以结合以上两个方法,先删除全部为 0 的行,再删除全部为 0 的列。

# 删除全为 0 的行
df = df.loc[~(df == 0).all(axis=1)]# 删除全为 0 的列
df_cleaned = df.loc[:, ~(df == 0).all(axis=0)]print("\n删除全为 0 的行和列:")
print(df_cleaned)
输出:
删除全为 0 的行和列:A   C
1  2  10
2  0  11
3  4  12

参数解释

  • (df == 0).all(axis=1):
    • axis=1 表示按行判断,检查每一行是否全为 0
    • 返回一个布尔数组,用于判断哪些行满足条件。
  • (df == 0).all(axis=0):
    • axis=0 表示按列判断,检查每一列是否全为 0
    • 返回一个布尔数组,用于判断哪些列满足条件。

扩展:原地删除(inplace=True

如果希望直接修改原 DataFrame 而不返回新的对象,可以结合 inplace=True 选项。

示例:
# 删除全为 0 的行
df.drop(index=df[(df == 0).all(axis=1)].index, inplace=True)# 删除全为 0 的列
df.drop(columns=df.columns[(df == 0).all(axis=0)], inplace=True)print("\n原地删除全为 0 的行和列:")
print(df)

总结

操作示例代码
删除全为 0 的行df.loc[~(df == 0).all(axis=1)]
删除全为 0 的列df.loc[:, ~(df == 0).all(axis=0)]
同时删除全为 0 的行和列结合上述两条代码

打印删除了哪些行和列

要打印出被删除的行和列,可以在删除操作之前获取需要删除的行或列的索引,并在删除后将这些行或列打印出来。


方法:打印删除的行和列

以下是删除全为 0 的行或列并打印它们的完整代码示例。

示例代码
import pandas as pd# 示例数据
data = {'A': [0, 2, 0, 4],'B': [0, 0, 0, 0],'C': [0, 10, 11, 12]
}
df = pd.DataFrame(data)print("原始数据:")
print(df)# 找到需要删除的行和列
rows_to_delete = df.index[(df == 0).all(axis=1)].tolist()  # 行索引
cols_to_delete = df.columns[(df == 0).all(axis=0)].tolist()  # 列名称# 删除这些行和列
df_cleaned = df.drop(index=rows_to_delete, columns=cols_to_delete)# 打印删除的行和列
print("\n删除的行索引:", rows_to_delete)
print("删除的列名称:", cols_to_delete)# 打印删除后的 DataFrame
print("\n删除后的数据:")
print(df_cleaned)

代码解释

  1. 找到需要删除的行和列

    • rows_to_delete = df.index[(df == 0).all(axis=1)]
      • df == 0:生成一个布尔矩阵,表示每个值是否为 0。
      • .all(axis=1):检查每一行是否全为 0。
      • df.index[...]:返回需要删除的行的索引。
    • cols_to_delete = df.columns[(df == 0).all(axis=0)]
      • .all(axis=0):检查每一列是否全为 0。
      • df.columns[...]:返回需要删除的列的名称。
  2. 删除这些行和列

    • 使用 drop() 方法同时删除行和列。
  3. 打印删除的行和列

    • rows_to_deletecols_to_delete 保存了被删除的行和列的索引和名称,可以直接打印。
  4. 打印删除后的 DataFrame

    • 检查最终清理后的数据。

输出示例

原始数据:
   A  B   C
0  0  0   0
1  2  0  10
2  0  0  11
3  4  0  12
输出:
删除的行索引: [0]
删除的列名称: ['B']删除后的数据:A   C
1  2.0  10
2  0.0  11
3  4.0  12

扩展:原地删除并打印

如果需要直接在原始 DataFrame 中删除,同时打印出被删除的行和列:

# 找到需要删除的行和列
rows_to_delete = df.index[(df == 0).all(axis=1)].tolist()
cols_to_delete = df.columns[(df == 0).all(axis=0)].tolist()# 打印即将删除的行和列
print("\n即将删除的行索引:", rows_to_delete)
print("即将删除的列名称:", cols_to_delete)# 原地删除
df.drop(index=rows_to_delete, columns=cols_to_delete, inplace=True)# 打印最终结果
print("\n删除后的数据:")
print(df)

总结

操作示例代码
找到需要删除的行索引rows_to_delete = df.index[(df == 0).all(axis=1)].tolist()
找到需要删除的列名称cols_to_delete = df.columns[(df == 0).all(axis=0)].tolist()
打印删除的行和列print("删除的行索引:", rows_to_delete)print("删除的列名称:", cols_to_delete)
删除行和列df.drop(index=rows_to_delete, columns=cols_to_delete)

相关文章:

pandas删除值全部为0的整行和整列,还有0.0,0.000000也要删除

在 Pandas 中,如果需要删除全部为 0 的行或列,可以通过 .all() 方法来判断行或列是否所有元素都为 0,然后删除这些行或列。 代码示例 示例数据: import pandas as pd# 示例数据 data {A: [0, 2, 0, 4],B: [0, 0, 0, 0],C: [0, …...

IO Virtualization with Virtio.part 1 [十二]

久等了各位! 本篇开始讲解 IO 虚拟化中的 virtio,我会以 Linux 的 IIC 驱动为例,从 IIC 驱动的非虚拟化实现,到 IIC 驱动的半虚拟化实现,再到最后 X-Hyper 中如何通过 virtio 来实现前后端联系,一步步把 v…...

ShardingSphere-Proxy分表场景:go测试案例

接续上篇文章《ShardingSphere-Proxy分表场景测试案例》 go测试用例: package mainimport ("fmt""math/rand""time""github.com/bwmarrin/snowflake""gorm.io/driver/mysql""gorm.io/gorm""gor…...

OpenStack系列第四篇:云平台基础功能与操作(Dashboard)

文章目录 1. 镜像(Image)添加镜像查看镜像删除镜像 2. 卷(Volume)创建卷查看卷删除卷 3. 网络(虚拟网络)创建网络查看网络删除网络 4. 实例类型创建实例类型查看实例类型删除实例类型 4. 密钥对&#xff08…...

ESP32 I2S音频总线学习笔记(一):初识I2S通信与配置基础

文章目录 简介为什么需要I2S?关于音频信号采样率分辨率音频声道 怎样使用I2S传输音频?位时钟BCLK字时钟WS串行数据SD I2S传输模型I2S通信格式I2S格式左对齐格式右对齐格式 i2s基本配置i2s 底层API加载I2S驱动设置I2S使用的引脚I2S读取数据I2S发送数据卸载…...

25上半年软考高级系统分析师易混淆知识点

第1章 系统工程与信息系统基础 易混淆点1:系统工程生命周期与信息系统的生命周期 1、系统工程生命周期阶段 探索性研究→概念阶段→开发阶段→生产阶段→使用阶段→保障阶段→退役阶段 2、信息系统的生命周期 产生阶段→开发阶段(单个系统开发&…...

采集JSON解析错误的修复

两段采集来的JSON格式: 一: {"hwgOnlineId":"554312", "jiwuChatId":"", "phoneCategoryId":"20006", "cuxiaoSeq":{voucherTitle:1,lh 二: {"pic":&q…...

Java中实现对象的深拷贝(Deep Copy)

在Java中实现对象的深拷贝(Deep Copy)意味着创建一个对象的副本,使得原对象和副本对象完全分离,对副本对象的任何修改都不会影响到原对象。以下是几种实现深拷贝的方法: 1. 手动实现深拷贝 对于自定义类,…...

位置编码-APE

Transformer 中的绝对位置编码 (以下由gpt 生成) Transformer 的绝对位置编码(Absolute Position Encoding, APE)是用于对序列数据中的位置信息进行建模的一种方法。在 Transformer 的架构中,输入数据(如句…...

MySQL有哪些锁?

1.MySQL有哪些锁? 全局锁表级锁 表锁元数据锁意向锁 行级锁 记录锁间隙锁临键锁临时意向锁 我了解的是MySQL的锁可以分为全局锁、表级锁、行级锁。 我比较熟悉的是表级锁和行级锁,如果我们对表结构进行修改时,MySQL就会对这个表结构加一个…...

Everything实现,快速搜索文件

最近编写NTFS文件实时搜索工具, 类似 Everything 这样, 翻阅了很多博客, 结果大致如下: 1.分析比较肤浅, 采用USN日志枚举来获取文件记录 速度一言难尽, 因为日志枚举的是全盘所有文件的所有日志, 记录比文件记录还多, 速度当然很慢, 还有的甚至于是 使用 DeviceIoControl 函数…...

[硬件] DELL BIOS 相关注意事项

前言 前段时间重装系统. DELL BIOS属实资料少, 又难用. 这里给出相关的注意事项, 并且配上图片. BIOS相关注意事项 进入BIOS ESC/F2/ F12. 都可以进入BIOS, 当进U盘的入Win PE系统时, 使用F12 效果更佳. 关闭安全模式 切换到Boot Configuration选项,将Secure Boot选项off选…...

Rocky Linux 下安装Liboffice

Rocky Linux下安装Liboffice。 Step1: 在桌面,单击击键盘的Window键,点击出现的白色software按钮图标; Step2: 输入lib,即可自动跳出libre Office, 进行安装; Step3: Have fun with Rocky Linux....

【每日学点鸿蒙知识】长时任务、HarmonyAppProvision申请、preferences、Testing工具、应用保活

1、HarmonyOS 如何解决语音聊天、通信app退后台系统采集播放回调就会停止,回前台未恢复? 关于应用切到后台系统采集播放回调停止的问题原因如下:为了降低设备耗电速度、保障用户使用流畅度,系统会对退至后台的应用进行管控&#…...

步进电机驱动算法——S形加减速算法原理

1. 前言: 最近项目又用到了步进电机,为了在运动中加减速更加平稳决定研究一下S型加减速,原来用过野火的s型加减速程序,云里雾里的移植成功了,今天再翻来程序看一脸懵逼,重新学习了一下发现所有公式都能看懂…...

【图像去噪】论文复现:大道至简!ZS-N2N的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与论文理论对应!

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中) 完整代码和训练好的模型权重文件下载链接见本文底…...

2024年中国新能源汽车用车发展怎么样 PaperGPT(一)

概述 在国家政策的强力扶持下,2024年中国新能源汽车市场迎来了新的发展机遇。本文将基于《中国新能源汽车用车报告(2024年)》的数据,对新能源汽车的市场发展和用车趋势概述。 新能源汽车市场发展 政策推动:国家和地…...

数据结构-排序思想

直接插入排序 将后面的无序区中的元素挨个向前面的有序区中插入。 1.将顺序表中R[0]用作哨兵,按索引i2...n的次序,将R[i]向有序区R[1...i-1]中执行插入操作。 2.插入操作可采取在有序区中从后向前的查找比较和移动的方法。 3.此操作中比较的次数与原序列…...

python 快速排序(Quick Sort)

快速排序(Quick Sort) 快速排序是一种高效的排序算法,采用分治法(Divide and Conquer)策略。它的基本思想是:选择一个基准元素(pivot),将数组分为两部分,使得…...

MySQL数据库——常见慢查询优化方式

本文详细介绍MySQL的慢查询相关概念,分析步骤及其优化方案等。 文章目录 什么是慢查询日志?慢查询日志的相关参数如何启用慢查询日志?方式一:修改配置文件方式二:通过命令动态启用 分析慢查询日志方式一:直…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...