当前位置: 首页 > news >正文

机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置

一、时间序列模型中时间滑动窗口作用

  在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式、趋势以及异常行为

1.特征提取
  时间滑动窗口允许从时间序列中提取局部特征。每个窗口内的数据被用来生成一个特征向量,这些特征向量可以表示该窗口内的状态或特性。滑动窗口技术使得模型能够聚焦于时间序列的局部区域,从而更准确地捕捉到数据中的短期动态和模式

2.捕捉时间序列的局部特征
  滑动窗口主要用于捕捉时间序列的局部特征。由于窗口大小是固定的,因此模型可以在每个窗口内独立地分析数据,从而捕捉到局部的变化和趋势。通过调整窗口大小和滑动步长,可以灵活地适应不同的时间序列数据和分析需求。较小的窗口大小可能更适合捕捉短期波动,而较大的窗口大小则可能更适合捕捉长期趋势。

3.生成训练样本
  这种方法适用于多种时间序列模型,包括递归神经网络(RNN)如LSTM和GRU等,因为这些模型能够处理输入的时间依赖性。

4.提高模型的预测性能
  通过使用滑动窗口技术,模型可以学习到时间序列中的局部和全局特征,从而提高预测的准确性。滑动窗口还可以帮助模型处理时间序列中的季节性变化和周期性模式,因为模型可以在不同的窗口内学习到这些特征。

5.适应不同的分析需求
  滑动窗口技术提供了灵活性,以适应不同的时间序列分析需求。通过调整窗口大小和滑动步长,可以平衡样本数量、模型的学习能力和训练时间。

二、举例滑动窗口选择设置为4

1.滑动窗口处理
  确定窗口大小,设定滑动窗口的大小为4,意味着每次从时间序列中选取连续4个时间点的数据作为一个数据段(或称为一个样本)。

2.生成样本集
  通过滑动窗口技术,从原始时间序列中生成一系列大小为4的样本。例如,如果原始时间序列为[x1, x2, x3, x4, x5, x6, x7, x8],则生成的样本集可能为[[x1, x2, x3, x4], [x2, x3, x4, x5], [x3, x4, x5, x6], [x4, x5, x6, x7], [x5, x6, x7, x8]]。

3.特征提取与输入
  将每个滑动窗口生成的样本作为特征向量输入到随机森林模型中。在滑动窗口大小为4的情况下,每个样本将包含4个特征(即4个时间点的数据)。

相关文章:

机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置

一、时间序列模型中时间滑动窗口作用 在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式…...

【Rust自学】7.5. use关键字 Pt.2 :重导入与换国内镜像源教程

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.5.1. 使用pub use重新导入名称 使用use将路径导入作用域内后。该名称在词作用域内是私有的。 以上一篇文章的代码为例: m…...

自定义luacheck校验规则

安装运行环境 安装环境及源码解析,参考:LuaCheck校验原理解析 自定义校验规则 从代码中可以看出,定义一条规则有以下关键点: 需要定义告警信息:由键值对组成,key为告警编码(不一定为纯数字&…...

python钉钉机器人

上代码 #coding:utf-8 import sys import time import hmac import hashlib import base64 import urllib.parse import requeststimestamp str(round(time.time() * 1000)) secret 你的secret secret_enc secret.encode(utf-8) string_to_sign {}\n{}.format(timestamp, …...

汇编学习笔记

汇编 1. debug指令 -R命令(register) 查看、改变CPU寄存器的内容 r ax 修改AX中的内容 -D命令(display) 查看内存中的内容 -E命令(enter) 改写内存中的内容 -U命令(unassenble反汇编) 将内存中的机器指令翻译成汇编指令 -T命令(trace跟踪) 执行一条机器指令 -A命令…...

混合并行训练框架性能对比

混合并行训练框架性能对比 1. 框架类型 DeepSpeed、Megatron - LM、Colossal - AI、SageMaker、Merak、FasterMoE、Tutel、Whale、Alpa、DAPPLE、Mesh - TensorFlow 2. 可用并行性(Available parallelisms) DNN framework(深度神经网络框架)DP(数据并行,Data Parallelis…...

基于Docker+模拟器的Appium自动化测试(二)

模拟器的设置 打开“夜神模拟器”的系统设置,切换到“手机与网络”页,选中网络设置下的“开启网络连接”和“开启网络桥接模式”复选框,而后选择“静态IP”单选框,在IP地址中输入“192.168.0.105”,网关等内容不再赘述…...

数据结构之线性表之链表(附加一个考研题)

链表的定义 链表的结构: 单链表-初始化 代码实现: 单链表-头插法 代码实现: 这里我给大家分析一下 我们每创建一个新的节点都要插在头节点的后面,我们一定要注意顺序 一定要先让新节点指向头节点指向的下一个节点,…...

etmem

title: 聚焦 Etmem:高效内存管理的新引擎 date: ‘2024-12-31’ category: blog tags: Etmem内存管理性能优化系统资源 sig: storage archives: ‘2024-12’ author:way_back summary: Etmem 是一款专注于内存管理优化的创新工具,通过智能的内存分配、回…...

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

LangChain4j与Elasticsearch:构建高效的语义嵌入存储 一、LangChain4j与Elasticsearch集成概述 1.1 LangChain4j简介 LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与…...

黄河小浪底水利枢纽泄洪预警广播系统正式上线

24小时站岗、危险自动报警、远程喊话驱离……近日,小浪底水利枢纽和西霞院水利枢纽的泄洪预警广播系统正式上线,通过数字化设施赋能管控水域日常监管,将危险水域各个角落“尽收眼底”,涉水危险行为“无处可藏”。 “前方船只请注意…...

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。通过在单一模型中统一理解与生成&#xff…...

[文献阅读]ReAct: Synergizing Reasoning and Acting in Language Models

文章目录 摘要Abstract:思考与行为协同化Reason(Chain of thought)ReAct ReAct如何协同推理 响应Action(动作空间)协同推理 结果总结 摘要 ReAct: Synergizing Reasoning and Acting in Language Models [2210.03629] ReAct: Synergizing Reasoning an…...

摄像头监视脚本

摄像头监视脚本,若检测到摄像头画面有变化,保存这一段视频 一、使用方法 1.运行脚本 默认参数Threshold3, Period3, path./recordings python cam.py --threshold30 --period3 --path./recordings 2.参数说明 threshold:摄像头捕获到的画面变化量阈值…...

FreeRTOS的内存管理(选择heap4.c文件的理由)

目录 1. 了解FreeRTOS内存管理 2. 了解内存碎片 3.了解各个heap.c的内存分配方法 1.heap1.c 2.heap2.c 3.heap3.c 4.heap4.c 5.heap5.c 总结: 内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量…...

SQL-leetcode-183. 从不订购的客户

183. 从不订购的客户 Customers 表: -------------------- | Column Name | Type | -------------------- | id | int | | name | varchar | -------------------- 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。 Orders 表&#…...

苹果系统MacOS下ObjectC建立的App程序访问opencv加载图片程序

前言 苹果系统下使用opencv感觉还是有些不太方便,总是感觉有点受到限制。本博客描述的是在MacOS下建立App程序然后调用opencv显示图片时出现的一些问题并最后解决的一个过程。 一、程序的建立 选择程序的类型: 选择界面模式和编程语言: 其余…...

《代码随想录》Day21打卡!

写在前面:祝大家新年快乐!!!2025年快乐,2024年拜拜~~~ 《代码随想录》二叉树:修剪二叉搜索树 本题的完整题目如下: 本题的完整思路如下: 1.本题使用递归进行求解,所以分…...

Dell服务器升级ubuntu 22.04失败解决

ubuntu系统原版本20.04,服务器dell T40. 执行apt update后,再执行apt upgrade。 apt update执行成功,但apt upgrade执行中断,提示如下: Checking package manager Reading package lists... Done Building dependen…...

构建全志 T113 Tina SDK

1、环境配置: 准备一个 Ubuntu 系统,可以是 WSL,虚拟机等,建议版本是 20.04。 1.1、安装必要的软件 进入系统后,输入下方命令安装需要的工具 : sudo apt update -y sudo apt full-upgrade -y sudo apt i…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...