机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置
一、时间序列模型中时间滑动窗口作用
在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式、趋势以及异常行为。
1.特征提取
时间滑动窗口允许从时间序列中提取局部特征。每个窗口内的数据被用来生成一个特征向量,这些特征向量可以表示该窗口内的状态或特性。滑动窗口技术使得模型能够聚焦于时间序列的局部区域,从而更准确地捕捉到数据中的短期动态和模式。
2.捕捉时间序列的局部特征
滑动窗口主要用于捕捉时间序列的局部特征。由于窗口大小是固定的,因此模型可以在每个窗口内独立地分析数据,从而捕捉到局部的变化和趋势。通过调整窗口大小和滑动步长,可以灵活地适应不同的时间序列数据和分析需求。较小的窗口大小可能更适合捕捉短期波动,而较大的窗口大小则可能更适合捕捉长期趋势。
3.生成训练样本
这种方法适用于多种时间序列模型,包括递归神经网络(RNN)如LSTM和GRU等,因为这些模型能够处理输入的时间依赖性。
4.提高模型的预测性能
通过使用滑动窗口技术,模型可以学习到时间序列中的局部和全局特征,从而提高预测的准确性。滑动窗口还可以帮助模型处理时间序列中的季节性变化和周期性模式,因为模型可以在不同的窗口内学习到这些特征。
5.适应不同的分析需求
滑动窗口技术提供了灵活性,以适应不同的时间序列分析需求。通过调整窗口大小和滑动步长,可以平衡样本数量、模型的学习能力和训练时间。
二、举例滑动窗口选择设置为4
1.滑动窗口处理
确定窗口大小,设定滑动窗口的大小为4,意味着每次从时间序列中选取连续4个时间点的数据作为一个数据段(或称为一个样本)。
2.生成样本集
通过滑动窗口技术,从原始时间序列中生成一系列大小为4的样本。例如,如果原始时间序列为[x1, x2, x3, x4, x5, x6, x7, x8],则生成的样本集可能为[[x1, x2, x3, x4], [x2, x3, x4, x5], [x3, x4, x5, x6], [x4, x5, x6, x7], [x5, x6, x7, x8]]。
3.特征提取与输入
将每个滑动窗口生成的样本作为特征向量输入到随机森林模型中。在滑动窗口大小为4的情况下,每个样本将包含4个特征(即4个时间点的数据)。
相关文章:
机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置
一、时间序列模型中时间滑动窗口作用 在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式…...

【Rust自学】7.5. use关键字 Pt.2 :重导入与换国内镜像源教程
喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.5.1. 使用pub use重新导入名称 使用use将路径导入作用域内后。该名称在词作用域内是私有的。 以上一篇文章的代码为例: m…...
自定义luacheck校验规则
安装运行环境 安装环境及源码解析,参考:LuaCheck校验原理解析 自定义校验规则 从代码中可以看出,定义一条规则有以下关键点: 需要定义告警信息:由键值对组成,key为告警编码(不一定为纯数字&…...

python钉钉机器人
上代码 #coding:utf-8 import sys import time import hmac import hashlib import base64 import urllib.parse import requeststimestamp str(round(time.time() * 1000)) secret 你的secret secret_enc secret.encode(utf-8) string_to_sign {}\n{}.format(timestamp, …...
汇编学习笔记
汇编 1. debug指令 -R命令(register) 查看、改变CPU寄存器的内容 r ax 修改AX中的内容 -D命令(display) 查看内存中的内容 -E命令(enter) 改写内存中的内容 -U命令(unassenble反汇编) 将内存中的机器指令翻译成汇编指令 -T命令(trace跟踪) 执行一条机器指令 -A命令…...

混合并行训练框架性能对比
混合并行训练框架性能对比 1. 框架类型 DeepSpeed、Megatron - LM、Colossal - AI、SageMaker、Merak、FasterMoE、Tutel、Whale、Alpa、DAPPLE、Mesh - TensorFlow 2. 可用并行性(Available parallelisms) DNN framework(深度神经网络框架)DP(数据并行,Data Parallelis…...

基于Docker+模拟器的Appium自动化测试(二)
模拟器的设置 打开“夜神模拟器”的系统设置,切换到“手机与网络”页,选中网络设置下的“开启网络连接”和“开启网络桥接模式”复选框,而后选择“静态IP”单选框,在IP地址中输入“192.168.0.105”,网关等内容不再赘述…...

数据结构之线性表之链表(附加一个考研题)
链表的定义 链表的结构: 单链表-初始化 代码实现: 单链表-头插法 代码实现: 这里我给大家分析一下 我们每创建一个新的节点都要插在头节点的后面,我们一定要注意顺序 一定要先让新节点指向头节点指向的下一个节点,…...
etmem
title: 聚焦 Etmem:高效内存管理的新引擎 date: ‘2024-12-31’ category: blog tags: Etmem内存管理性能优化系统资源 sig: storage archives: ‘2024-12’ author:way_back summary: Etmem 是一款专注于内存管理优化的创新工具,通过智能的内存分配、回…...
LangChain4j与Elasticsearch:构建高效的语义嵌入存储
LangChain4j与Elasticsearch:构建高效的语义嵌入存储 一、LangChain4j与Elasticsearch集成概述 1.1 LangChain4j简介 LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与…...

黄河小浪底水利枢纽泄洪预警广播系统正式上线
24小时站岗、危险自动报警、远程喊话驱离……近日,小浪底水利枢纽和西霞院水利枢纽的泄洪预警广播系统正式上线,通过数字化设施赋能管控水域日常监管,将危险水域各个角落“尽收眼底”,涉水危险行为“无处可藏”。 “前方船只请注意…...

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化
多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。通过在单一模型中统一理解与生成ÿ…...

[文献阅读]ReAct: Synergizing Reasoning and Acting in Language Models
文章目录 摘要Abstract:思考与行为协同化Reason(Chain of thought)ReAct ReAct如何协同推理 响应Action(动作空间)协同推理 结果总结 摘要 ReAct: Synergizing Reasoning and Acting in Language Models [2210.03629] ReAct: Synergizing Reasoning an…...
摄像头监视脚本
摄像头监视脚本,若检测到摄像头画面有变化,保存这一段视频 一、使用方法 1.运行脚本 默认参数Threshold3, Period3, path./recordings python cam.py --threshold30 --period3 --path./recordings 2.参数说明 threshold:摄像头捕获到的画面变化量阈值…...

FreeRTOS的内存管理(选择heap4.c文件的理由)
目录 1. 了解FreeRTOS内存管理 2. 了解内存碎片 3.了解各个heap.c的内存分配方法 1.heap1.c 2.heap2.c 3.heap3.c 4.heap4.c 5.heap5.c 总结: 内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量…...

SQL-leetcode-183. 从不订购的客户
183. 从不订购的客户 Customers 表: -------------------- | Column Name | Type | -------------------- | id | int | | name | varchar | -------------------- 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。 Orders 表&#…...

苹果系统MacOS下ObjectC建立的App程序访问opencv加载图片程序
前言 苹果系统下使用opencv感觉还是有些不太方便,总是感觉有点受到限制。本博客描述的是在MacOS下建立App程序然后调用opencv显示图片时出现的一些问题并最后解决的一个过程。 一、程序的建立 选择程序的类型: 选择界面模式和编程语言: 其余…...

《代码随想录》Day21打卡!
写在前面:祝大家新年快乐!!!2025年快乐,2024年拜拜~~~ 《代码随想录》二叉树:修剪二叉搜索树 本题的完整题目如下: 本题的完整思路如下: 1.本题使用递归进行求解,所以分…...
Dell服务器升级ubuntu 22.04失败解决
ubuntu系统原版本20.04,服务器dell T40. 执行apt update后,再执行apt upgrade。 apt update执行成功,但apt upgrade执行中断,提示如下: Checking package manager Reading package lists... Done Building dependen…...

构建全志 T113 Tina SDK
1、环境配置: 准备一个 Ubuntu 系统,可以是 WSL,虚拟机等,建议版本是 20.04。 1.1、安装必要的软件 进入系统后,输入下方命令安装需要的工具 : sudo apt update -y sudo apt full-upgrade -y sudo apt i…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...

Selenium 查找页面元素的方式
Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素,以下是主要的定位方式: 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...