当前位置: 首页 > news >正文

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景

在这里插入图片描述

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。如有滤波、导航方面的代码定制需求,可通过文末卡片联系作者获得帮助

文章目录

  • 结合LSTM和UKF的背景
  • 结合LSTM和UKF的优势
  • 应用实例
  • 研究现状
  • MATLAB代码示例
  • 结论

结合LSTM和UKF的背景

长短期记忆网络(LSTM)是一种特殊的递归神经网络(RNN),擅长处理和预测时间序列数据。它通过引入记忆单元来解决传统RNN的长期依赖问题。

在这里插入图片描述

无迹卡尔曼滤波器(UKF)是一种用于非线性系统状态估计的滤波算法,通过无迹变换来处理非线性问题。
在这里插入图片描述

结合LSTM和UKF的优势

相关文章:

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。如有滤波、导航方面的代码定制需求,可通过文末卡片联系作者获得帮助 文章目录 结合LSTM和UKF的背景结合LSTM和UKF的优势应用实例研究现状MATLAB代码示例结论结合LSTM和…...

【MATLAB APP Designer】小波阈值去噪(第一期)

代码原理及流程 小波阈值去噪是一种信号处理方法,用于从信号中去除噪声。这种方法基于小波变换,它通过将信号分解到不同的尺度和频率上来实现。其基本原理可以分为以下几个步骤: (1)小波变换:首先对含噪信…...

ClickHouse副本搭建

一. 副本概述 副本的目的主要是保障数据的高可用性,ClickHouse中的副本没有主从之分。所有的副本都是平等的。 副本写入流程: 二. 副本搭建 1. 实验环境 hadoop1(192.168.47.128) hadoop2(192.168.47.129)2. 修改配置文件 修改两台主机/etc/click…...

K3知识点

提示:文章 文章目录 前言一、顺序队列和链式队列题目 顺序队列和链式队列的定义和特性实际应用场景顺序表题目 链式队列 二、AVL树三、红黑树四、二叉排序树五、树的概念题目1左子树右子树前序遍历、中序遍历,后序遍历先根遍历、中根遍历左孩子右孩子题目…...

cocos creator 3.x版本如何添加打开游戏时首屏加载进度条

前言 项目有一个打开游戏时添加载入进度条的需求。这个功能2.X版本是自带的,不知为何在3.X版本中移除了。 实现 先说一下解决思路,就是在引擎源码加载场景的位置插入一个方法,然后在游戏入口HTML处监听即可。 1.找到对应源码脚本 在coco…...

Fama MacBeth两步法与多因子模型的回归检验

Fama MacBeth两步法与多因子模型的回归检验 – 潘登同学的因子投资笔记 本文观点来自最近学习的石川老师《因子投资:方法与实践》一书 文章目录 Fama MacBeth两步法与多因子模型的回归检验 -- 潘登同学的因子投资笔记 多因子回归检验时序回归检验截面回归检验Fama–…...

IDEA 搭建 SpringBoot 项目之配置 Maven

目录 1?配置 Maven 1.1?打开 settings.xml 文件1.2?配置本地仓库路径1.3?配置中央仓库路径1.4?配置 JDK 版本1.5?重新下载项目依赖 2?配置 idea 2.1?在启动页打开设置2.2?配置 Java Compiler2.3?配置 File Encodings2.4?配置 Maven2.5?配置 Auto Import2.6?配置 C…...

node.js之---事件循环机制

事件循环机制 Node.js 事件循环机制(Event Loop)是其核心特性之一,它使得 Node.js 能够高效地处理大量并发的 I/O 操作。Node.js 基于 非阻塞 I/O,使用事件驱动的模型来实现异步编程。事件循环是 Node.js 实现异步编程的基础&…...

Python OpenAI 库开发指南:从入门到实战精通

在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALLE等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力…...

flash-attention保姆级安装教程

FlashAttention安装教程 FlashAttention 是一种高效且内存优化的注意力机制实现,旨在提升大规模深度学习模型的训练和推理效率。 高效计算:通过优化 IO 操作,减少内存访问开销,提升计算效率。 内存优化:降低内存占用…...

送给一年编程道路的自己

回望过去一年在编程道路上的成长与收获,是一个很有意义的过程。总结自己这一年的编程经历,不仅可以帮助你更清晰地了解自己的进步和不足,还能为未来的发展指引方向。以下是一些可能的收获,供你参考: 1. 技能提升 语言…...

LeRobot(1)

Train python lerobot/scripts/train.py \ policyact \ envaloha \ env.taskAlohaInsertion-v0 \ dataset_repo_idlerobot/aloha_sim_insertion_human \ load_data一直报错,忘记截图了,反正是ssh报错,下不下来,网…...

C++ 设计模式:组合模式(Composite Pattern)

链接:C 设计模式 链接:C 设计模式 - 迭代器模式 链接:C 设计模式 - 职责链模式 组合模式(Composite Pattern)是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式…...

OpenHarmony源码编译后烧录镜像教程,RK3566鸿蒙开发板演示

本文介绍瑞芯微主板/开发板编译OpenHarmony源码后烧录镜像的教程,触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。 编译源码…...

强化学习(1)

Reinforcement Learning Goal-directed learing from ineraction with the environment. 1. Basic Element 基本元素 1.1 Agent 玩家 1.2 Environment 1.3 Goal 2. Main Element 主要元素 2.1 State 2.2 Action 状态与行为往复 2.3 Reward 目标:最大化总…...

【漏洞复现】金和OA C6 FileDownLoad.aspx 任意文件读取漏洞复现

免责声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。工具来自网络,安全性自测,如有侵权请联系删除。本次测试仅供学习使用,如若非法他用,与平台和本文作…...

开源模型应用落地-qwen2-7b-instruct-LoRA微调-Axolotl-单机多卡-RTX 4090双卡(七)

一、前言 本篇文章将使用Axolotl去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。 二、术语介绍 2.1. LoRA微调 LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。 是一种有效的自适应策略,…...

Dockerfile 构建继承父镜像的 ENTRYPOINT 和 CMD

在 Docker 中,Dockerfile 是否继承其父映像的 ENTRYPOINT 和 CMD,取决于 Dockerfile 的编写方式。以下是规则: 1. CMD 的继承 子镜像会继承父映像的 CMD,但如果在子镜像的 Dockerfile 中显式定义了新的 CMD,就会覆盖…...

46. Three.js案例-创建颜色不断变化的立方体模型

46. Three.js案例-创建颜色不断变化的立方体模型 实现效果 知识点 Three.js基础组件 WebGLRenderer THREE.WebGLRenderer是Three.js提供的用于渲染场景的WebGL渲染器。它支持抗锯齿处理,可以设置渲染器的大小和背景颜色。 构造器 antialias: 是否开启抗锯齿&am…...

Linux系统离线部署MySQL详细教程(带每步骤图文教程)

1、登录官网下载对应的安装包 MySQL :: Developer Zone 2、将压缩包上传到服务器上,这里直接上传到/usr/local路径上 使用sftp工具上传到/usr/local目录上 3、解压压缩包 tar -xf mysql-8.0.39-linux-glibc2.17-x86_64.tar.xz 4、将mysql-8.0.39-linux-glibc2.17…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...