当前位置: 首页 > news >正文

[react] 纯组件优化子

 有组件如下,上面变化秒数, 下面是大量计算的子组件,上面每一秒钟变化一次,这时候子组件会不断重新渲染, 浪费资源

父组件如下

import React, { memo, useEffect, useMemo, useState } from 'react';
import type { ReactNode, FC } from 'react';
import HugeCount from './Te';
interface IProps {children?: ReactNode;
}const template: FC<IProps> = () => {const [time, setTime] = useState(new Date());useEffect(() => {console.log('渲染主体组件');setTimeout(() => {setTime(new Date());}, 1000);}, [time]);return (<div>{time.getSeconds()}<HugeCount  /></div>);
};export default memo(template);

子组件如下

import React, { memo, useEffect, useMemo, useState } from 'react';
import type { ReactNode, FC } from 'react';interface IProps {children?: ReactNode;data: {};bad: any;
}const template: FC<IProps> = (props) => {const [num, setNum] = useState(100);const handleChange = (e: React.ChangeEvent<HTMLInputElement>) => {setNum(Number(e.target.value));props.bad();};const hugeCount = () => {console.log('大量计算');return num;};const result = useMemo(hugeCount, [num]);// const result = useMemo(()=>hugeCount(), [num]);useEffect(() => {console.log('渲染大量计算组件');});return (<div><input type='text' onChange={(e) => handleChange(e)} /><div>大量计算结果:{result}</div></div>);
};export default template;

 什么是纯组件?

组件 的核心特性是避免不必要的渲染,它通过浅比较 propsstate 来决定是否更新 UI。纯组件本身不抑制副作用,它只是优化了渲染的过程。

先说state, 大量计算的子组件的state并未变化, 所以理应不变, 这时候先优化自身导出,用memo

这时候可了, 再说props,我在父组件传这个给子组件,然而秒数刷新子组件重新渲染,为什么

  const data = {name:"23"}

因为这个是引用类型,父组件秒数变化时刷新页面, 这个data会重新生成地址,所以props变了,子组件就刷新 ,那怎么办?

用useMemo,或者useState, 这2有缓存功能

 const [data, setData] = useState(33);

同理,你想传函数, 用useCallback,不然父组件重新渲染, 你子组件收到的函数是新的地址!! 然后重新渲染, 浪费性能

  function bad() {console.log('hahah');}const badFun = React.useMemo(() => bad, []);

 



小useMemo细节,2种写法都可, 前者比如是一个无参数, 后者可传参

  const result = useMemo(hugeCount, [num]); const result = useMemo(()=>hugeCount(), [num]); 

相关文章:

[react] 纯组件优化子

有组件如下,上面变化秒数, 下面是大量计算的子组件,上面每一秒钟变化一次,这时候子组件会不断重新渲染, 浪费资源 父组件如下 import React, { memo, useEffect, useMemo, useState } from react; import type { ReactNode, FC } from react; import HugeCount from ./Te; int…...

美观强大的文件保险库Chibisafe

简介 什么是 Chibisafe &#xff1f; Chibisafe 是一款用 Typescript 编写的快速文件上传服务&#xff0c;非常实用。它接受文件、照片、文档以及您能想到的任何内容&#xff0c;并返回可共享的链接&#xff0c;供您发送给其他人。它易于使用、易于部署、免费且开源&#xff0…...

详细教程:SQL2008数据库备份与还原全流程!

数据的安全性至关重要&#xff0c;无论是操作系统、重要文件、磁盘存储&#xff0c;还是企业数据库&#xff0c;备份都是保障其安全和完整性的关键手段。拥有备份意味着即使发生误删、系统崩溃或病毒攻击等问题&#xff0c;也能迅速通过恢复功能解决&#xff0c;避免数据丢失带…...

HTML——49.header和footer标签

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>header和footer标签</title></head><body><!--header和footer标签:是html5中新标签--><!--header:定义文档的页眉&#xff0c;通常用来定义可见…...

【蓝桥杯选拔赛真题87】python输出字符串 第十五届青少年组蓝桥杯python选拔赛真题 算法思维真题解析

目录 python输出字符串 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python输出字符串 第十五届蓝桥杯青少年组python比赛选拔赛真题详细解析…...

OpenStack-Dashboard界面简单修改

OpenStack Dashboard界面替换图片 一、dashboard界面Logo的路径及文件 dashboard的Logo存放&#xff08;在Controller节点&#xff09;的路径&#xff1a; /usr/share/openstack-dashboard/openstack_dashboard/static/dashboard/img/涉及需要修改的文件&#xff08;3个&…...

DevOps工程技术价值流:Ansible自动化与Semaphore集成

在DevOps的浪潮中&#xff0c;自动化运维工具扮演着举足轻重的角色。Ansible&#xff0c;作为一款新兴的自动化运维工具&#xff0c;凭借其强大的功能和灵活性&#xff0c;在运维领域迅速崭露头角。本文将深入探讨Ansible的特点、架构、工作原理&#xff0c;以及其应用场景&…...

【服务器】上传文件到服务器并训练深度学习模型下载服务器文件到本地

前言&#xff1a;本文教程为&#xff0c;上传文件到服务器并训练深度学习模型&#xff0c;与下载服务器文件到本地。演示指令输入&#xff0c;完整的上传文件到服务器&#xff0c;并训练模型过程&#xff1b;并演示完整的下载服务器文件到本地的过程。 本文使用的服务器为云服…...

第四届电子信息工程与数据处理(EIEDP 2025)

第四届电子信息工程与数据处理 2025 4th International Conference on Electronic Information Engineering and Data Processing 2025年1月17-19日 马来西亚 吉隆坡 重要信息 会议官网&#xff1a;www.eiedp.net 大会时间&#xff1a;2025年1月17-19日 大会地点&#…...

模型预测控制(MPC)算法介绍

模型预测控制&#xff08;Model Predictive Control&#xff0c;MPC&#xff09;是一种先进的控制策略&#xff0c;广泛应用于工业过程控制、机器人控制、电力系统等领域。它基于系统的模型&#xff0c;通过滚动优化来预测系统未来的行为&#xff0c;并据此确定当前的最优控制输…...

设计模式 创建型 建造者模式(Builder Pattern)与 常见技术框架应用 解析

建造者模式&#xff0c;又称生成器模式&#xff0c;是一种对象构建模式。它主要用于构建复杂对象&#xff0c;通过将复杂对象的构建过程与其表示分离&#xff0c;使得同样的构建过程可以创建出具有不同表示的对象。该模式的核心思想是将一个复杂对象的构建过程分解为多个简单的…...

嵌入式系统中C++的基本使用方法

大家好,今天主要给大家分享一下,最近操作C++代码的控制方法。 什么是构造函数?构造函数在对象实例化时被系统自动调用,仅且调用一次。 什么是析构函数?与构造函数相反, 在对象结束其生命周期时系统自动执行析构函数。 第一个:析构函数与构造函数区别 实例代码: #inclu…...

机器人C++开源库The Robotics Library (RL)使用手册(四)

建立自己的机器人3D模型和运动学模型 这里以国产机器人天机TR8为例,使用最普遍的DH运动学模型,结合RL所需的描述文件,进行生成。 最终,需要的有两个文件,一个是.wrl三维模型描述文件;一个是.xml运动学模型描述文件。 1、通过STEP/STP三维文件生成wrl三维文件 机器人的…...

在 uni-app 中使用 wxml-to-canvas 的踩坑经验总结

在 uni-app 中使用 wxml-to-canvas 的踩坑经验总结 wxml-to-canvas 是一款非常强大的小程序工具&#xff0c;可以将 WXML 转换为 Canvas 绘图&#xff0c;用于生成海报、分享图片等。将其应用于 uni-app 项目中&#xff0c;可以为多端开发带来极大的便利&#xff0c;但也有一些…...

视频智能翻译

i68,爱六八,链接你我他 EasyVideoTrans英文视频转换成中文视频 EasyVideoTrans简要 最快的英文视频转中文方案由B站多位程序员Up主共同协作开发开源的项目在线Demo:EasyVideoTrans前端项目:https://github.com/sutro-planet/easyvideotrans-frontend后端项目:https://github…...

《Python加解密小实验:探索数据加密与解密的世界》

铺垫&#xff08;1&#xff09;-源码 import hashlib source "你好" # print(hashlib.md5(source.encode()).hexdigest())# 文件加解密 with open(../文件引用/index.png, rb) as file:data file.read() # print(hashlib.md5(data).hexdigest())# SHA也是摘要算法…...

C高级day四shell脚本

1.思维导图 2.终端输入一个C源文件名&#xff08;.c结尾&#xff09;判断文件是否有内容&#xff0c;如果没有内容删除文件&#xff0c;如果有内容编译并执行该文件。 #!/bin/bashread -p "请输入一个.c脚本名&#xff1a;" n if [ -s "$n" ] thenecho $n…...

android studio 写一个小计时器(版本二)

as版本&#xff1a;23.3.1patch2 例程&#xff1a;timer 在前一个版本的基本上改的&#xff0c;增加了继续的功能&#xff0c;实现方法稍微不同。 动画演示&#xff1a; activity_main.xml <?xml version"1.0" encoding"utf-8"?> <androidx…...

【网络安全实验室】SQL注入实战详情

如果额头终将刻上皱纹&#xff0c;你只能做到&#xff0c;不让皱纹刻在你的心上 1.最简单的SQL注入 查看源代码&#xff0c;登录名为admin 最简单的SQL注入&#xff0c;登录名写入一个常规的注入语句&#xff1a; 密码随便填&#xff0c;验证码填正确的&#xff0c;点击登录…...

华为,新华三,思科网络设备指令

1. 设备信息查看 华为 display version # 查看设备版本信息 display device # 查看设备硬件信息 新华三&#xff08;H3C&#xff09; display version # 查看设备版本信息 display device # 查看设备硬件信息 锐捷 show version …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...