当前位置: 首页 > news >正文

PyTorch快速入门教程【小土堆】之完整模型训练套路

视频地址完整的模型训练套路(一)_哔哩哔哩_bilibili

import torch
import torchvision
from model import *
from torch import nn
from torch.utils.data import DataLoader# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)# 创建网络模型
tudui = Tudui()# 损失函数
loss_fn = nn.CrossEntropyLoss()# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10for i in range(epoch):print("--------第{}轮训练开始---------".format(i + 1))# 训练步骤开始for data in train_dataloader:imgs, targets = dataoutputs = tudui(imgs)loss = loss_fn(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))# 测试步骤开始total_test_loss =0total_accuracy = 0with torch.no_grad():# 保证不会调优for data in test_dataloader:imgs, targets = dataoutputs = tudui(imgs)loss = loss_fn(outputs, targets)total_test_loss = total_test_loss + loss.item()accuracy = (outputs.argmax(1) == targets).sum()total_accuracy = total_accuracy + accuracyprint("整体测试集上的Loss: {}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))torch.save(tudui, "tudui_{}.pth".format(i))print("模型已保存")

相关文章:

PyTorch快速入门教程【小土堆】之完整模型训练套路

视频地址完整的模型训练套路(一)_哔哩哔哩_bilibili import torch import torchvision from model import * from torch import nn from torch.utils.data import DataLoader# 准备数据集 train_data torchvision.datasets.CIFAR10(root"CIFAR10&…...

【AIGC】 ChatGPT实战教程:如何高效撰写学术论文引言

💥 欢迎来到我的博客!很高兴能在这里与您相遇! 首页:GPT-千鑫 – 热爱AI、热爱Python的天选打工人,活到老学到老!!!导航 - 人工智能系列:包含 OpenAI API Key教程, 50个…...

TTL 传输中过期问题定位

问题: 工作环境中有一个acap的环境,ac的wan口ip是192.168.186.195/24,ac上lan上有vlan205,其ip子接口地址192.168.205.1/24,ac采用非nat模式,而是路由模式,在上级路由器上有192.168.205.0/24指向…...

非docker方式部署openwebui过程记录

之前一直用docker方式部署openwebui,结果这东西三天两头升级,我这一升级拉取docker镜像硬盘空间嗖嗖的占用,受不了,今天改成了直接部署,以下是部署过程记录。 一、停止及删除没用的docker镜像占用的硬盘空间 docker s…...

大模型的prompt的应用二

下面总结一些在工作中比较实用的prompt应用。还可以到以下网站参考更多的prompt AI Prompts - WayToAGI 举个例子,让大模型写一份周报 # 角色:智能周报编写助手 ## 背景: 需要根据产品经理提供的简要周报框架,补充完整的周报内容。 ## 注意事项: 言简意赅,重点突…...

ubuntu 22.04安装ollama

1. 顺利的情况 按照官网的提示,执行下面的命令: curl -fsSL https://ollama.com/install.sh | sh如果网络畅通,github访问也没有问题,那就等待安装完成就行 2. 不顺利的情况 由于众所周知的情况,国内网络访问githu…...

从企业级 RAG 到 AI Assistant,阿里云 Elasticsearch AI 搜索技术实践

在过去一年中,基座大模型技术的快速迭代推动了 AI 搜索的演进,主要体现在以下几个方面: 1.搜索技术链路重构 基于大模型的全面重构正在重塑 AI 搜索的技术链路。从数据采集、文档解析、向量检索到查询分析、意图识别、排序模型和知识图谱等…...

Redis--高可用(主从复制、哨兵模式、分片集群)

高可用(主从复制、哨兵模式、分片集群) 高可用性Redis如何实现高可用架构?主从复制原理1. 全量同步2. 命令传播3. 增量同步 Redis Sentinel(哨兵模式)为什么要有哨兵模式?哨兵机制是如何工作的?…...

框架(Mybatis配置日志)

mybatis配置日志输出 先导入日志依赖 <dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency> 编写log4j.properties配置文件 # Root logger option log4j.rootLogge…...

人工智能-Python上下文管理器-with

概念 Python提供了 with 语句的这种写法&#xff0c;既简单又安全&#xff0c;并且 with 语句执行完成以后自动调用关闭文件操作&#xff0c;即使出现异常也会自动调用关闭文件操作&#xff1b;其效果等价于try-except-finally with 拥有以下两个魔术方法 __enter__() 上文管理…...

每天40分玩转Django:Django类视图

Django类视图 一、知识要点概览表 类别知识点掌握程度要求基础视图View、TemplateView、RedirectView深入理解通用显示视图ListView、DetailView熟练应用通用编辑视图CreateView、UpdateView、DeleteView熟练应用Mixin机制ContextMixin、LoginRequiredMixin理解原理视图配置U…...

自动化测试之Pytest框架(万字详解)

Pytest测试框架 一、前言二、安装2.1 命令行安装2.2 验证安装 三、pytest设计测试用例注意点3.1 命名规范3.2 断言清晰3.3 fixture3.4 参数化设置3.5 测试隔离3.6 异常处理3.7 跳过或者预期失败3.8 mocking3.9 标记测试 四、以案例初入pytest4.1 第一个pytest测试4.2 多个测试分…...

基于51单片机(STC32G12K128)和8X8彩色点阵屏(WS2812B驱动)的小游戏《贪吃蛇》

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、定时器02、矩阵按键模块3、8X8彩色点阵屏 四、主函数总结 系列文章目录 前言 《贪吃蛇》&#xff0c;一款经典的、怀旧的小游戏&#xff0c;单片机入门必写程序。 以《贪吃蛇》为载体&#xff0c;熟悉各种屏幕…...

2011-2020年各省粗离婚率数据

2011-2020年各省粗离婚率数据 1、时间&#xff1a;2011-2020年 2、来源&#xff1a;国家统计局 3、指标&#xff1a;地区、年份、粗离婚率 4、范围&#xff1a;31省 5、指标解释&#xff1a;粗离婚率指某地区当年离婚对数占该地区年平均人口的比重。计算公式为&#xff1a…...

C++高级编程技巧:模板元编程与性能优化实践

C高级编程技巧&#xff1a;模板元编程与性能优化实践 在C编程的世界里&#xff0c;模板元编程&#xff08;Template Metaprogramming&#xff09;是一项强大的技术&#xff0c;它允许程序员在编译时而非运行时进行计算和类型操作。这项技术的核心在于C模板系统&#xff0c;它…...

Mac 版本向日葵退出登录账号

找遍整个软件&#xff0c;Mac 版本的向日葵甚至逆天到没有提供退出登录的功能… 随后我发现可以直接删除向日葵的配置文件达到退出登录的效果&#xff0c;具体操作如下&#xff1a; cd /etc # 确认存在 orayconfig.conf 文件 ls orayconfig.conf  # 删除 sudo rm -f oray…...

SOLIDWORKS Composer在产品设计、制造与销售中的应用

SOLIDWORKS Composer是一款专为技术团队设计的高效沟通工具&#xff0c;广泛应用于产品设计、制造、销售及售后等领域。它能从复杂的CAD数据中提取关键信息&#xff0c;轻松转化为高质量的产品文档、交互式3D动画及说明视频&#xff0c;显著提升产品沟通效率。 Composer擅长制…...

Win11+WLS Ubuntu 鸿蒙开发环境搭建(一)

参考文章 Windows11安装linux子系统 WSL子系统迁移、备份与导入全攻略 如何扩展 WSL 2 虚拟硬盘的大小 Win10安装的WSL子系统占用磁盘空间过大如何释放 《Ubuntu — 调整文件系统大小命令resize2fs》 penHarmony南向开发笔记&#xff08;一&#xff09;开发环境搭建 一&a…...

[CSAW/网络安全] Git泄露+命令执行 攻防世界 mfw 解题详析

Home界面&#xff1a; Home界面翻译如下&#xff1a; 欢迎访问我的网站&#xff01; 我自己从头开始写的&#xff01; 您可以使用上面的链接浏览页面&#xff01; About界面&#xff1a; 观察到Git&#xff0c;联想Git泄露 Git泄露 Git是一个非常流行的开源分布式版本控制系…...

MySQL 锁那些事

Q1 : MySQL有哪些锁,功能是什么,如何项目中使用?Q2 : 行锁是如何实现的?什么情况下会使用行锁?Q3 : 四种事务隔离形式的行锁有什么不一样?读未提交读提交可重复读串行 Q4 : MySQL 的读写都是怎样加锁的?Q5 : 需要注意什么? Q1 : MySQL有哪些锁,功能是什么,如何项目中使用…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...