当前位置: 首页 > news >正文

【LLM-Agent】Building effective agents和典型workflows

note

  • Anthropic的工程经验:
    • 大道至简,尽量维护系统的简洁;
    • 尽量让过程更加透明(因为你依赖的是LLM的决策,如果只看输出不看过程,很容易陷入难以debug的情况);
    • 对LLM需要调用的工具,尽可能地好好进行工具说明和测试。

文章目录

  • note
  • 一、构建块、工作流和Agent
  • 二、一些典型 workflows
    • Building block: The augmented LLM
    • Workflow: Prompt chaining
    • Workflow: Routing
    • Workflow: Parallelization
    • Workflow: Orchestrator-workers
    • Workflow: Evaluator-optimizer
  • 三、Agent系统
  • Reference

一、构建块、工作流和Agent

workflows是人来定义明确的规则和流程,然后中间步骤由LLM来执行;但是 agents 是为了更加灵活地处理某些任务,且决策是由模型决定的,而不是预定义的规则。

当需要更多复杂性时,工作流可以为明确定义的任务提供可预测性和一致性,而当需要大规模灵活性和模型驱动的决策时,Agent是更好的选择。

二、一些典型 workflows

Building block: The augmented LLM

无论是 workflows 还是 agents,基础组件都是增强版的LLM:
在这里插入图片描述

Workflow: Prompt chaining

Prompt-Chaining: 当任务可以被清晰地划分成多个steps。一般用于用更高的延迟,来换取更高的准确率。
在这里插入图片描述

Workflow: Routing

Routing:当需要考虑针对不同场景要采用不同模型时,可使用这种导航的workflow。
在这里插入图片描述

Workflow: Parallelization

Parallelization:并行处理,当需要同时得到多个结果,最后集成在一起时使用。
在这里插入图片描述

Workflow: Orchestrator-workers

Orchestrator-workers:这个跟上面的区别在于,使用一个模型来判断任务要怎么划分,你事先可能没有一个明确的子任务划分。

在这里插入图片描述

Workflow: Evaluator-optimizer

Evaluator-optimizer:迭代优化工作流。让LLM的结果不断自我优化。使用这种工作流,一般需要满足两点:1.LLM的输出,确实可能有很大的提升空间;2.LLM有能力对输出提供有价值的评价
在这里插入图片描述

三、Agent系统

真正的 agents 系统是为了解决:

  • 复杂的开放性问题
  • 难以对问题进行明确的分解、分步,难以规划

在这里插入图片描述

例如一个经典场景:编程助手(不是单单代码补全,或者简单的代码问答,而是能直接操作一个工程)的内部流程可能是这样的:
在这里插入图片描述
可以参考Anthropic的项目:https://www.anthropic.com/research/swe-bench-sonnet

目前 Agents 落地最成功的两个场景就是:

  • 客服系统:
    • 常规的QA功能
    • 对接数据库,查询功能
    • 修改用户数据
    • 自动化票据生成
  • 编程IDE
    • 著名的Cursor编程IDE
    • 例如 Anthropic自己对SWE-bench做的工具:https://www.anthropic.com/research/swe-bench-sonnet

Reference

[1] 2024 AI Agents,2025将是Agentic系统之年
[2] https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agentshttps://www.anthropic.com/research/building-effective-agents
[3] https://www.anthropic.com/research/building-effective-agents

相关文章:

【LLM-Agent】Building effective agents和典型workflows

note Anthropic的工程经验: 大道至简,尽量维护系统的简洁;尽量让过程更加透明(因为你依赖的是LLM的决策,如果只看输出不看过程,很容易陷入难以debug的情况);对LLM需要调用的工具&am…...

《量子比特大阅兵:不同类型量子比特在人工智能领域的优劣势剖析》

在科技的前沿,量子比特与人工智能的融合正开启一扇全新的大门。不同类型的量子比特,如超导、离子阱、光量子等,在与人工智能结合时展现出独特的优势与劣势。 超导量子比特 超导量子比特是目前应用较为广泛且研究相对成熟的量子比特类型。它…...

《探秘开源大模型:AI 世界的“超级引擎”》

《探秘开源大模型:AI 世界的“超级引擎”》 一、开源大模型崛起之路二、开源大模型发展历程回顾(一)早期奠基:理论突破与初步实践(二)快速发展:百花齐放的模型格局(三)当下态势:走向成熟与多元融合三、开源大模型核心技术剖析(一)Transformer 架构:基石之稳(二)…...

el-table行列转换简单版,仅限单行数据

原始数据格式如下&#xff0c;如果不是此格式&#xff0c;请转换成以下格式在进行以下操作 [{ label: name, value: Tom },{ label: age, value: 25 },{ label: country, value: UK } ]代码如下 <template><el-table :data"tableData" style"width: …...

2025年1月4日蜻蜓q旗舰版st完整开源·包含前后端所有源文件·开源可商用可二开·优雅草科技·优雅草kir|优雅草星星|优雅草银满|优雅草undefined

2025年1月4日蜻蜓q旗舰版st完整开源包含前后端所有源文件开源可商用可二开优雅草科技优雅草kir|优雅草星星|优雅草银满|优雅草undefined 产品介绍&#xff1a; 本产品主要贡献者优雅草科技优雅草kir|优雅草星星|优雅草银满|优雅草undefined-青史留名&#xff0c;时光如川浪淘…...

SQL把字符串按逗号分割成记录

在 SQL 中&#xff0c;可以通过以下方法将字符串按逗号分割&#xff0c;并将每个分割的值作为单独的记录插入到结果集中。以下是针对不同数据库系统的实现方法&#xff1a; 1. 使用 STRING_SPLIT&#xff08;SQL Server 2016&#xff09; STRING_SPLIT 是 SQL Server 提供的内置…...

C#设计模式(行为型模式):观察者模式

C#设计模式&#xff1a;观察者模式&#xff0c;让对象间通信更优雅 在软件开发中&#xff0c;我们经常会遇到一个对象的状态发生改变&#xff0c;其他对象需要自动更新或做出相应反应的场景。例如&#xff1a; GUI事件处理&#xff1a; 当用户点击按钮时&#xff0c;按钮需要…...

pytorch镜像源

我以为的 pip install torch2.3.1cu118 torchvision0.18.1cu118 torchaudio2.3.1cu118 -f https://download.pytorch.org/whl/torch_stable.html实际上&#xff0c;有很多加速方案 为提高下载速度可以使用国内的镜像源来安装与 CUDA 11.8 兼容的 PyTorch。 方法 1&#xff1a…...

Verilog语法之常用行为级语法

摘要&#xff1a;本文主要介绍了一些在verilog中的行为级语法&#xff0c;并且提供了大量的运行实际例子&#xff0c;可以通过这些例子感受行为级语法在仿真中的巨大作用。 概述&#xff1a;行为级语法是RTL级的上一层&#xff0c;或者说是比RTL级更高级的语法&#xff0c;其语…...

PADS Logic原理图中有很多页原理图,如何(怎样)删除其中一页或者多页

我们在进行PADS Logic进行原理图设计的时候&#xff0c;有时候可能遇到一次性设计了很多页的原理图&#xff0c;比如说十几页的原理图。那么我们在进行PADS Layout的时候&#xff0c;可能将这些原理图绘制两块板或者多块PCB板&#xff0c;那么这时候我们需要将其中的一张原理图…...

蓝色简洁引导页网站源码

一款蓝色的简洁引导页&#xff0c;适合资源分发和网站备用引导。 1.源码上传至虚拟机或者服务器 2.绑定域名和目录 3.访问域名安装 4.安装完成后就行了 https://pan.quark.cn/s/b2d8b9c5dc7f https://pan.baidu.com/s/17h1bssUNhhR9DMyNTc-i9Q?pwd84sf https://caiyun.139.com…...

Apache PDFBox添加maven依赖,pdf转成图片

要使用Apache PDFBox将PDF文件转换为图片&#xff0c;并将其添加到Maven项目中&#xff0c;您可以按照以下步骤操作&#xff1a; 1. 添加Maven依赖 在您的pom.xml文件中添加Apache PDFBox的依赖。请确保使用最新版本的PDFBox库。截至2025年&#xff0c;以下是推荐的配置&…...

mybatis 和 mybatisPlus 兼容性问题

项目采用的是 mybatis&#xff0c; 后续引入了 mybatisPlus&#xff0c;用 mybatisX 创建的四个类一直报错&#xff0c;提示找不到符号&#xff0c;意识到 mybatis 和 mybatisPlus 的兼容性问题&#xff0c;通过修改配置 两者的配置如下 #配置mybatis配置 mybatis:type-aliase…...

Mono里运行C#脚本23—mono_jit_exec

前面已经分析一部分代码,可以打下基础知识,当然还有很多其它部分的内容,没有深入去了解。 接着下来,我们去探索一下怎么样找到执行应用程序的入口。 在这个嵌入脚本程序里,有一个这样的函数调用: main_function (domain, file, argc - 1, argv + 1); 这个函数的作用,…...

第十一章 图论

/* * 题目名称&#xff1a;连通图 * 题目来源&#xff1a;吉林大学复试上机题 * 题目链接&#xff1a;http://t.cn/AiO77VoA * 代码作者&#xff1a;杨泽邦(炉灰) */#include <iostream> #include <cstdio>using namespace std;const int MAXN 1000 10;int fathe…...

纯前端实现将pdf转为图片(插件pdfjs)

需求来源 预览简历功能在移动端&#xff0c;由于用了一层iframe把这个功能嵌套在了app端&#xff0c;再用一个iframe来预览&#xff0c;只有ios能看到&#xff0c;安卓就不支持&#xff0c;查了很多资料和插件&#xff0c;原理基本上都是用iframe实现的。最终转换思路&#xf…...

【IT人物系列】之MySQL创始人

前言 当今世界有无数的人构成&#xff0c;其中有些人做了一些改变世界的事情&#xff0c;比如&#xff1a;乔布斯缔造了Apple帝国&#xff0c;‌詹姆斯高斯林创造了Java语言等。正是这些优秀的人做的这些优秀的事情&#xff0c;让这个世界更加美好。因此他们值得铭记。 从今天…...

在Typora中实现自动编号

文章目录 在Typora中实现自动编号1. 引言2. 准备工作3. 自动编号的实现3.1 文章大纲自动编号3.2 主题目录&#xff08;TOC&#xff09;自动编号3.3 文章内容自动编号3.4 完整代码 4. 应用自定义CSS5. 结论 在Typora中实现自动编号 1. 引言 Typora是一款非常流行的Markdown编辑…...

Single Shot MultiBox Detector(SSD)

文章目录 摘要Abstract1. 引言2. 框架2.1 网络结构2.2 损失函数2.3 训练细节 3. 创新点和不足3.1 创新点3.2 不足 参考总结 摘要 与Faster R-CNN相比&#xff0c;SSD是一个真正的单阶段多目标检测模型&#xff0c;同时也是一个全卷积网络&#xff0c;不仅检测准确率高&#xff…...

kafka生产者专题(原理+拦截器+序列化+分区+数据可靠+数据去重+事务)

目录 生产者发送数据原理参数说明代码示例&#xff08;同步发送数据&#xff09;代码示例&#xff08;异步&#xff09; 异步和同步的区别同步发送定义与流程特点 异步发送定义与流程特点 异步回调描述代码示例 拦截器描述代码示例 消息序列化描述代码示例&#xff08;自定义序…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...