当前位置: 首页 > news >正文

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医疗健康,机器学习算法的应用无处不在。本文将深入探讨一种经典且强大的机器学习算法——支持向量机(Support

Vector Machine, SVM),并通过实际代码案例展示其应用魅力。

一、SVM原理概述

SVM是一种二分类模型,其基本思想是在特征空间中寻找一个最优的超平面,使得两类样本(分别位于超平面的两侧)到这个超平面的距离最大化,即所谓的间隔最大化。这个最优超平面不仅能够很好地区分训练样本,还能对未知样本做出较为准确的预测。对于非线性可分问题,SVM通过引入核函数技巧,将输入数据映射到高维空间,使其在高维空间中变得线性可分。

  1. 线性可分SVM :在原始特征空间中直接寻找最优超平面。
  2. 非线性SVM :通过核函数(如径向基函数RBF、多项式核等)将输入数据映射到更高维空间,实现非线性分类。
二、SVM的关键要素
  • 支持向量 :距离最优超平面最近的训练样本点,这些点决定了超平面的位置和方向。
  • 软间隔 :为了处理线性不可分情况,SVM允许一定的分类错误,通过引入松弛变量和惩罚参数C来控制错误率与间隔大小之间的权衡。
  • 核函数 :将低维非线性可分问题转换为高维线性可分问题的关键,常见的核函数有线性核、多项式核、RBF核等。
三、SVM的实践应用

下面,我们将通过Python中的scikit-learn库,展示如何使用SVM进行手写数字识别的实际案例。

环境准备

首先,确保你已经安装了scikit-learn和matplotlib库。如果未安装,可以使用pip进行安装:

bash复制代码pip install scikit-learn matplotlib  
代码实现
python复制代码import numpy as np  import matplotlib.pyplot as plt  from sklearn import datasets, svm, metrics  from sklearn.model_selection import train_test_split  # 加载手写数字数据集  digits = datasets.load_digits()  # 数据预处理:将图像数据展平为向量  n_samples = len(digits.images)  data = digits.images.reshape((n_samples, -1))  # 划分训练集和测试集  X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False)  # 创建SVM分类器,使用RBF核函数  classifier = svm.SVC(gamma=0.001)  # 训练模型  classifier.fit(X_train, y_train)  # 预测测试集  predicted = classifier.predict(X_test)  # 评估模型性能  print("Classification report for classifier %s:\n"  % (classifier))  print(metrics.classification_report(y_test, predicted))  print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predicted))  # 可视化部分预测结果  _, axes = plt.subplots(2, 4)  images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))  for ax, (image, prediction) in zip(axes[0, :], images_and_predictions[:4]):  ax.set_axis_off()  ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')  ax.set_title('Prediction: %i' % prediction)  # 显示真实标签  for ax, image, prediction in zip(axes[1, :], digits.images[n_samples // 2:n_samples // 2 + 4], y_test[:4]):  ax.set_axis_off()  ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')  ax.set_title('True label: %i' % prediction)  plt.show()  
代码解析
  1. 数据加载与预处理 :使用 datasets.load_digits() 加载手写数字数据集,并将每个8x8的图像数据展平为64维的向量。
  2. 数据划分 :通过 train_test_split 函数将数据集分为训练集和测试集,测试集占50%。
  3. 模型训练 :创建一个使用RBF核的SVM分类器,并在训练集上进行训练。
  4. 模型评估 :使用测试集进行预测,并通过 classification_reportconfusion_matrix 评估模型性能。
  5. 结果可视化 :随机选择几个测试样本,展示其预测结果和真实标签,以直观感受SVM的分类效果。
四、总结

SVM作为一种强大的监督学习算法,在分类任务中展现出了卓越的性能。通过引入核函数,SVM能够有效处理非线性问题,使得其在图像识别、文本分类等领域有着广泛的应用。本文不仅详细阐述了SVM的基本原理和关键要素,还通过手写数字识别的实际案例,展示了SVM在Python中的实现步骤和效果评估方法。希望本文能帮助读者深入理解SVM,并在实际项目中灵活运用这一强大的机器学习工具。

相关文章:

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用 在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医…...

解决Postman一直在转圈加载无法打开问题的方法

在使用Postman这款强大的API测试工具时,有时可能会遇到程序长时间加载而无法正常使用的情况。面对这样的问题,可以尝试以下几种解决办法: 方法一:直接运行Postman可执行文件 定位到Postman的安装目录 如果您不确定Postman的具体安…...

利用 LangChain 构建对话式 AI 应用

随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。 什么是 La…...

力扣--34.在排序数组中查找元素的第一个和最后一个位置

题目 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target,返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

【Java回顾】Day2 正则表达式----异常处理

参考资料:菜鸟教程 https://www.runoob.com/java/java-exceptions.html 正则表达式 有一部分没看完 介绍 字符串的模式搜索、编辑或处理文本java.util.regex包,包含了pattern和mathcer类,用于处理正则表达式的匹配操作。 捕获组 把多个字符…...

【SpringBoot】当 @PathVariable 遇到 /,如何处理

1. 问题复现 在解析一个 URL 时,我们经常会使用 PathVariable 这个注解。例如我们会经常见到如下风格的代码: RestController Slf4j public class HelloWorldController {RequestMapping(path "/hi1/{name}", method RequestMethod.GET)publ…...

【FlutterDart】页面切换 PageView PageController(9 /100)

上效果: 有些不能理解官方例子里的动画为什么没有效果,有可能是我写法不对 后续如果有动画效果修复了,再更新这篇,没有动画效果,总觉得感受的丝滑效果差了很多 上代码: import package:flutter/material.…...

Backend - C# 的日志 NLog日志

目录 一、注入依赖和使用 logger 二、配置记录文件 1.安装插件 NLog 2.创建 nlog.config 配置文件 3. Programs配置日志信息 4. 设置 appsettings.json 的 LogLevel 5. 日志设定文件和日志级别的优先级 (1)常见的日志级别优先级 (2&…...

Flask是什么?深入解析 Flask 的设计与应用实践

文章目录 一、引言:从微框架到生态系统二、Flask 的核心设计理念三、Flask 的关键组件解析3.1 路由系统3.2 请求与响应对象3.3 模板引擎 Jinja23.4 扩展系统 四、Flask 的并发与性能优化4.1 默认的单线程模型4.2 提升并发性能的方法4.3 性能优化技巧 五、在企业级场…...

malloc函数和calloc函数的区别是什么?

malloc函数和calloc函数在动态内存管理中都起着分配内存空间的作用,但它们存在以下区别: 参数方面 - malloc函数:它只有一个参数,该参数表示要分配的字节数。例如, int *ptr (int *)malloc(10 * sizeof(int)); &#…...

Ansys Maxwell:3PH 变压器电感计算

各位变形金刚粉丝们,大家好: 在本博客中,我讨论了如何使用 Ansys Maxwell 计算三相变压器中的自感、互感和漏感。有多种方法和表达式可用于计算这些电感。 基本电感定义 电感的单位是亨利(H),其基本单位…...

【Go】Go文件操作详解

1. 前言 相信如果看过之前文章的朋友们一定知道我想讲什么了?灵魂三问:文件是什么?为什么需要文件?文件怎么操作?前面章节我们已经能够编写各种各样的功能代码了,但是一个很现实的问题就是我们没有任何 持…...

[react+ts] useRef获取自定义组件dom或方法声明

想用useRef获取自定义组件? 如果获取dom,直接写 const sonRef useRef<HTMLDivElement>(null); 然后子组件用forwardRef包一层,注意是HTMLDivElement,别写错, 写HTMLElement不行 const Son forwardRef<HTMLDivElement, IProps>((props, ref) > {}) 切记这…...

AI 将在今年获得“永久记忆”,2028美国会耗尽能源储备

AI的“永久记忆”时代即将来临 谷歌前CEO施密特揭示了AI技术的前景&#xff0c;他相信即将在2025年迎来一场伟大的变化。AI将实现“永久记忆”&#xff0c;改变我们与科技的互动过程。施密特将现有的AI上下文窗口比作人类的短期记忆&#xff0c;难以持久保存信息。他的设想是…...

【视频笔记】基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil【持续更新】

视频链接: 基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil 从头编写一个视觉语言模型:PloyGamma,是谷歌的一个模型 1:原始图像 2:视觉编码器(本文是viT),通过对比学习进行训练。这个对比学习最开始是CLIP,后来被谷歌改成了SigLIP 3:线性投影层 4:如何将图…...

解决 C++ 中头文件相互引用和解耦问题

在 C 中&#xff0c;当多个 .h 文件相互引用时&#xff0c;可能会导致 循环依赖 或 头文件冗余 问题&#xff0c;进而引发编译时间延迟、代码复杂度增加等问题。为了有效地解耦和组织代码&#xff0c;可以采用以下几种策略和思想&#xff1a; 1. 前向声明&#xff08;Forward …...

河马剧场(短剧)APP的邀请码怎么填写

上篇给大家说到河马剧场免费看短剧还能领5.2元3天vip会员&#xff0c;本文就说一下河马剧场河马短剧APP的邀请码怎么填写。 河马短剧APP填写邀请码分三步&#xff1a; 1、安装登陆河马短剧APP 2、点击底部导航栏中间的“福利” 3、往下划会看到“填写邀请码领3天vip” 4、…...

01:C语言的本质

C语言的本质 1、ARM架构与汇编2、局部变量初始化与空间分配2.1、局部变量的初始化2.1、局部变量数组初始化 3、全局变量/静态变量初始化化与空间分配4、堆空间 1、ARM架构与汇编 ARM简要架构如下&#xff1a;CPU&#xff0c;ARM(能读能写)&#xff0c;Flash&#xff08;能读&a…...

第1章:数据库基础

第1章&#xff1a;数据库基础 1.1 数据库概述 1.1.1 什么是数据库 数据库的定义数据库的发展历程数据库的重要性 1.1.2 关系型数据库简介 关系型数据库模型常见的关系型数据库关系型数据库的特点 1.1.3 MySQL在企业中的应用 Web应用电商平台金融系统大数据存储 1.2 数据…...

C++教程 | string类的定义和初始化方法

在C中&#xff0c;string是标准库中用于处理字符串的类&#xff0c;定义在 头文件中&#xff0c;它提供了方便、灵活的字符串操作功能。以下是一些常见的定义和初始化string对象的方法&#xff1a; 1. 默认初始化 可以直接定义一个空的string对象&#xff0c;语法如下&#x…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...