机器学习算法深度解析:以支持向量机(SVM)为例的实践应用
机器学习算法深度解析:以支持向量机(SVM)为例的实践应用
在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医疗健康,机器学习算法的应用无处不在。本文将深入探讨一种经典且强大的机器学习算法——支持向量机(Support
Vector Machine, SVM),并通过实际代码案例展示其应用魅力。
一、SVM原理概述
SVM是一种二分类模型,其基本思想是在特征空间中寻找一个最优的超平面,使得两类样本(分别位于超平面的两侧)到这个超平面的距离最大化,即所谓的间隔最大化。这个最优超平面不仅能够很好地区分训练样本,还能对未知样本做出较为准确的预测。对于非线性可分问题,SVM通过引入核函数技巧,将输入数据映射到高维空间,使其在高维空间中变得线性可分。
- 线性可分SVM :在原始特征空间中直接寻找最优超平面。
- 非线性SVM :通过核函数(如径向基函数RBF、多项式核等)将输入数据映射到更高维空间,实现非线性分类。
二、SVM的关键要素
- 支持向量 :距离最优超平面最近的训练样本点,这些点决定了超平面的位置和方向。
- 软间隔 :为了处理线性不可分情况,SVM允许一定的分类错误,通过引入松弛变量和惩罚参数C来控制错误率与间隔大小之间的权衡。
- 核函数 :将低维非线性可分问题转换为高维线性可分问题的关键,常见的核函数有线性核、多项式核、RBF核等。
三、SVM的实践应用
下面,我们将通过Python中的scikit-learn库,展示如何使用SVM进行手写数字识别的实际案例。
环境准备
首先,确保你已经安装了scikit-learn和matplotlib库。如果未安装,可以使用pip进行安装:
bash复制代码pip install scikit-learn matplotlib
代码实现
python复制代码import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm, metrics from sklearn.model_selection import train_test_split # 加载手写数字数据集 digits = datasets.load_digits() # 数据预处理:将图像数据展平为向量 n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False) # 创建SVM分类器,使用RBF核函数 classifier = svm.SVC(gamma=0.001) # 训练模型 classifier.fit(X_train, y_train) # 预测测试集 predicted = classifier.predict(X_test) # 评估模型性能 print("Classification report for classifier %s:\n" % (classifier)) print(metrics.classification_report(y_test, predicted)) print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predicted)) # 可视化部分预测结果 _, axes = plt.subplots(2, 4) images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted)) for ax, (image, prediction) in zip(axes[0, :], images_and_predictions[:4]): ax.set_axis_off() ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') ax.set_title('Prediction: %i' % prediction) # 显示真实标签 for ax, image, prediction in zip(axes[1, :], digits.images[n_samples // 2:n_samples // 2 + 4], y_test[:4]): ax.set_axis_off() ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') ax.set_title('True label: %i' % prediction) plt.show()
代码解析
- 数据加载与预处理 :使用
datasets.load_digits()加载手写数字数据集,并将每个8x8的图像数据展平为64维的向量。 - 数据划分 :通过
train_test_split函数将数据集分为训练集和测试集,测试集占50%。 - 模型训练 :创建一个使用RBF核的SVM分类器,并在训练集上进行训练。
- 模型评估 :使用测试集进行预测,并通过
classification_report和confusion_matrix评估模型性能。 - 结果可视化 :随机选择几个测试样本,展示其预测结果和真实标签,以直观感受SVM的分类效果。
四、总结
SVM作为一种强大的监督学习算法,在分类任务中展现出了卓越的性能。通过引入核函数,SVM能够有效处理非线性问题,使得其在图像识别、文本分类等领域有着广泛的应用。本文不仅详细阐述了SVM的基本原理和关键要素,还通过手写数字识别的实际案例,展示了SVM在Python中的实现步骤和效果评估方法。希望本文能帮助读者深入理解SVM,并在实际项目中灵活运用这一强大的机器学习工具。
相关文章:
机器学习算法深度解析:以支持向量机(SVM)为例的实践应用
机器学习算法深度解析:以支持向量机(SVM)为例的实践应用 在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医…...
解决Postman一直在转圈加载无法打开问题的方法
在使用Postman这款强大的API测试工具时,有时可能会遇到程序长时间加载而无法正常使用的情况。面对这样的问题,可以尝试以下几种解决办法: 方法一:直接运行Postman可执行文件 定位到Postman的安装目录 如果您不确定Postman的具体安…...
利用 LangChain 构建对话式 AI 应用
随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。 什么是 La…...
力扣--34.在排序数组中查找元素的第一个和最后一个位置
题目 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target,返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...
【Java回顾】Day2 正则表达式----异常处理
参考资料:菜鸟教程 https://www.runoob.com/java/java-exceptions.html 正则表达式 有一部分没看完 介绍 字符串的模式搜索、编辑或处理文本java.util.regex包,包含了pattern和mathcer类,用于处理正则表达式的匹配操作。 捕获组 把多个字符…...
【SpringBoot】当 @PathVariable 遇到 /,如何处理
1. 问题复现 在解析一个 URL 时,我们经常会使用 PathVariable 这个注解。例如我们会经常见到如下风格的代码: RestController Slf4j public class HelloWorldController {RequestMapping(path "/hi1/{name}", method RequestMethod.GET)publ…...
【FlutterDart】页面切换 PageView PageController(9 /100)
上效果: 有些不能理解官方例子里的动画为什么没有效果,有可能是我写法不对 后续如果有动画效果修复了,再更新这篇,没有动画效果,总觉得感受的丝滑效果差了很多 上代码: import package:flutter/material.…...
Backend - C# 的日志 NLog日志
目录 一、注入依赖和使用 logger 二、配置记录文件 1.安装插件 NLog 2.创建 nlog.config 配置文件 3. Programs配置日志信息 4. 设置 appsettings.json 的 LogLevel 5. 日志设定文件和日志级别的优先级 (1)常见的日志级别优先级 (2&…...
Flask是什么?深入解析 Flask 的设计与应用实践
文章目录 一、引言:从微框架到生态系统二、Flask 的核心设计理念三、Flask 的关键组件解析3.1 路由系统3.2 请求与响应对象3.3 模板引擎 Jinja23.4 扩展系统 四、Flask 的并发与性能优化4.1 默认的单线程模型4.2 提升并发性能的方法4.3 性能优化技巧 五、在企业级场…...
malloc函数和calloc函数的区别是什么?
malloc函数和calloc函数在动态内存管理中都起着分配内存空间的作用,但它们存在以下区别: 参数方面 - malloc函数:它只有一个参数,该参数表示要分配的字节数。例如, int *ptr (int *)malloc(10 * sizeof(int)); &#…...
Ansys Maxwell:3PH 变压器电感计算
各位变形金刚粉丝们,大家好: 在本博客中,我讨论了如何使用 Ansys Maxwell 计算三相变压器中的自感、互感和漏感。有多种方法和表达式可用于计算这些电感。 基本电感定义 电感的单位是亨利(H),其基本单位…...
【Go】Go文件操作详解
1. 前言 相信如果看过之前文章的朋友们一定知道我想讲什么了?灵魂三问:文件是什么?为什么需要文件?文件怎么操作?前面章节我们已经能够编写各种各样的功能代码了,但是一个很现实的问题就是我们没有任何 持…...
[react+ts] useRef获取自定义组件dom或方法声明
想用useRef获取自定义组件? 如果获取dom,直接写 const sonRef useRef<HTMLDivElement>(null); 然后子组件用forwardRef包一层,注意是HTMLDivElement,别写错, 写HTMLElement不行 const Son forwardRef<HTMLDivElement, IProps>((props, ref) > {}) 切记这…...
AI 将在今年获得“永久记忆”,2028美国会耗尽能源储备
AI的“永久记忆”时代即将来临 谷歌前CEO施密特揭示了AI技术的前景,他相信即将在2025年迎来一场伟大的变化。AI将实现“永久记忆”,改变我们与科技的互动过程。施密特将现有的AI上下文窗口比作人类的短期记忆,难以持久保存信息。他的设想是…...
【视频笔记】基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil【持续更新】
视频链接: 基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil 从头编写一个视觉语言模型:PloyGamma,是谷歌的一个模型 1:原始图像 2:视觉编码器(本文是viT),通过对比学习进行训练。这个对比学习最开始是CLIP,后来被谷歌改成了SigLIP 3:线性投影层 4:如何将图…...
解决 C++ 中头文件相互引用和解耦问题
在 C 中,当多个 .h 文件相互引用时,可能会导致 循环依赖 或 头文件冗余 问题,进而引发编译时间延迟、代码复杂度增加等问题。为了有效地解耦和组织代码,可以采用以下几种策略和思想: 1. 前向声明(Forward …...
河马剧场(短剧)APP的邀请码怎么填写
上篇给大家说到河马剧场免费看短剧还能领5.2元3天vip会员,本文就说一下河马剧场河马短剧APP的邀请码怎么填写。 河马短剧APP填写邀请码分三步: 1、安装登陆河马短剧APP 2、点击底部导航栏中间的“福利” 3、往下划会看到“填写邀请码领3天vip” 4、…...
01:C语言的本质
C语言的本质 1、ARM架构与汇编2、局部变量初始化与空间分配2.1、局部变量的初始化2.1、局部变量数组初始化 3、全局变量/静态变量初始化化与空间分配4、堆空间 1、ARM架构与汇编 ARM简要架构如下:CPU,ARM(能读能写),Flash(能读&a…...
第1章:数据库基础
第1章:数据库基础 1.1 数据库概述 1.1.1 什么是数据库 数据库的定义数据库的发展历程数据库的重要性 1.1.2 关系型数据库简介 关系型数据库模型常见的关系型数据库关系型数据库的特点 1.1.3 MySQL在企业中的应用 Web应用电商平台金融系统大数据存储 1.2 数据…...
C++教程 | string类的定义和初始化方法
在C中,string是标准库中用于处理字符串的类,定义在 头文件中,它提供了方便、灵活的字符串操作功能。以下是一些常见的定义和初始化string对象的方法: 1. 默认初始化 可以直接定义一个空的string对象,语法如下&#x…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
