当前位置: 首页 > news >正文

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医疗健康,机器学习算法的应用无处不在。本文将深入探讨一种经典且强大的机器学习算法——支持向量机(Support

Vector Machine, SVM),并通过实际代码案例展示其应用魅力。

一、SVM原理概述

SVM是一种二分类模型,其基本思想是在特征空间中寻找一个最优的超平面,使得两类样本(分别位于超平面的两侧)到这个超平面的距离最大化,即所谓的间隔最大化。这个最优超平面不仅能够很好地区分训练样本,还能对未知样本做出较为准确的预测。对于非线性可分问题,SVM通过引入核函数技巧,将输入数据映射到高维空间,使其在高维空间中变得线性可分。

  1. 线性可分SVM :在原始特征空间中直接寻找最优超平面。
  2. 非线性SVM :通过核函数(如径向基函数RBF、多项式核等)将输入数据映射到更高维空间,实现非线性分类。
二、SVM的关键要素
  • 支持向量 :距离最优超平面最近的训练样本点,这些点决定了超平面的位置和方向。
  • 软间隔 :为了处理线性不可分情况,SVM允许一定的分类错误,通过引入松弛变量和惩罚参数C来控制错误率与间隔大小之间的权衡。
  • 核函数 :将低维非线性可分问题转换为高维线性可分问题的关键,常见的核函数有线性核、多项式核、RBF核等。
三、SVM的实践应用

下面,我们将通过Python中的scikit-learn库,展示如何使用SVM进行手写数字识别的实际案例。

环境准备

首先,确保你已经安装了scikit-learn和matplotlib库。如果未安装,可以使用pip进行安装:

bash复制代码pip install scikit-learn matplotlib  
代码实现
python复制代码import numpy as np  import matplotlib.pyplot as plt  from sklearn import datasets, svm, metrics  from sklearn.model_selection import train_test_split  # 加载手写数字数据集  digits = datasets.load_digits()  # 数据预处理:将图像数据展平为向量  n_samples = len(digits.images)  data = digits.images.reshape((n_samples, -1))  # 划分训练集和测试集  X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False)  # 创建SVM分类器,使用RBF核函数  classifier = svm.SVC(gamma=0.001)  # 训练模型  classifier.fit(X_train, y_train)  # 预测测试集  predicted = classifier.predict(X_test)  # 评估模型性能  print("Classification report for classifier %s:\n"  % (classifier))  print(metrics.classification_report(y_test, predicted))  print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predicted))  # 可视化部分预测结果  _, axes = plt.subplots(2, 4)  images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))  for ax, (image, prediction) in zip(axes[0, :], images_and_predictions[:4]):  ax.set_axis_off()  ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')  ax.set_title('Prediction: %i' % prediction)  # 显示真实标签  for ax, image, prediction in zip(axes[1, :], digits.images[n_samples // 2:n_samples // 2 + 4], y_test[:4]):  ax.set_axis_off()  ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')  ax.set_title('True label: %i' % prediction)  plt.show()  
代码解析
  1. 数据加载与预处理 :使用 datasets.load_digits() 加载手写数字数据集,并将每个8x8的图像数据展平为64维的向量。
  2. 数据划分 :通过 train_test_split 函数将数据集分为训练集和测试集,测试集占50%。
  3. 模型训练 :创建一个使用RBF核的SVM分类器,并在训练集上进行训练。
  4. 模型评估 :使用测试集进行预测,并通过 classification_reportconfusion_matrix 评估模型性能。
  5. 结果可视化 :随机选择几个测试样本,展示其预测结果和真实标签,以直观感受SVM的分类效果。
四、总结

SVM作为一种强大的监督学习算法,在分类任务中展现出了卓越的性能。通过引入核函数,SVM能够有效处理非线性问题,使得其在图像识别、文本分类等领域有着广泛的应用。本文不仅详细阐述了SVM的基本原理和关键要素,还通过手写数字识别的实际案例,展示了SVM在Python中的实现步骤和效果评估方法。希望本文能帮助读者深入理解SVM,并在实际项目中灵活运用这一强大的机器学习工具。

相关文章:

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用

机器学习算法深度解析:以支持向量机(SVM)为例的实践应用 在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医…...

解决Postman一直在转圈加载无法打开问题的方法

在使用Postman这款强大的API测试工具时,有时可能会遇到程序长时间加载而无法正常使用的情况。面对这样的问题,可以尝试以下几种解决办法: 方法一:直接运行Postman可执行文件 定位到Postman的安装目录 如果您不确定Postman的具体安…...

利用 LangChain 构建对话式 AI 应用

随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。 什么是 La…...

力扣--34.在排序数组中查找元素的第一个和最后一个位置

题目 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target,返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

【Java回顾】Day2 正则表达式----异常处理

参考资料:菜鸟教程 https://www.runoob.com/java/java-exceptions.html 正则表达式 有一部分没看完 介绍 字符串的模式搜索、编辑或处理文本java.util.regex包,包含了pattern和mathcer类,用于处理正则表达式的匹配操作。 捕获组 把多个字符…...

【SpringBoot】当 @PathVariable 遇到 /,如何处理

1. 问题复现 在解析一个 URL 时,我们经常会使用 PathVariable 这个注解。例如我们会经常见到如下风格的代码: RestController Slf4j public class HelloWorldController {RequestMapping(path "/hi1/{name}", method RequestMethod.GET)publ…...

【FlutterDart】页面切换 PageView PageController(9 /100)

上效果: 有些不能理解官方例子里的动画为什么没有效果,有可能是我写法不对 后续如果有动画效果修复了,再更新这篇,没有动画效果,总觉得感受的丝滑效果差了很多 上代码: import package:flutter/material.…...

Backend - C# 的日志 NLog日志

目录 一、注入依赖和使用 logger 二、配置记录文件 1.安装插件 NLog 2.创建 nlog.config 配置文件 3. Programs配置日志信息 4. 设置 appsettings.json 的 LogLevel 5. 日志设定文件和日志级别的优先级 (1)常见的日志级别优先级 (2&…...

Flask是什么?深入解析 Flask 的设计与应用实践

文章目录 一、引言:从微框架到生态系统二、Flask 的核心设计理念三、Flask 的关键组件解析3.1 路由系统3.2 请求与响应对象3.3 模板引擎 Jinja23.4 扩展系统 四、Flask 的并发与性能优化4.1 默认的单线程模型4.2 提升并发性能的方法4.3 性能优化技巧 五、在企业级场…...

malloc函数和calloc函数的区别是什么?

malloc函数和calloc函数在动态内存管理中都起着分配内存空间的作用,但它们存在以下区别: 参数方面 - malloc函数:它只有一个参数,该参数表示要分配的字节数。例如, int *ptr (int *)malloc(10 * sizeof(int)); &#…...

Ansys Maxwell:3PH 变压器电感计算

各位变形金刚粉丝们,大家好: 在本博客中,我讨论了如何使用 Ansys Maxwell 计算三相变压器中的自感、互感和漏感。有多种方法和表达式可用于计算这些电感。 基本电感定义 电感的单位是亨利(H),其基本单位…...

【Go】Go文件操作详解

1. 前言 相信如果看过之前文章的朋友们一定知道我想讲什么了?灵魂三问:文件是什么?为什么需要文件?文件怎么操作?前面章节我们已经能够编写各种各样的功能代码了,但是一个很现实的问题就是我们没有任何 持…...

[react+ts] useRef获取自定义组件dom或方法声明

想用useRef获取自定义组件? 如果获取dom,直接写 const sonRef useRef<HTMLDivElement>(null); 然后子组件用forwardRef包一层,注意是HTMLDivElement,别写错, 写HTMLElement不行 const Son forwardRef<HTMLDivElement, IProps>((props, ref) > {}) 切记这…...

AI 将在今年获得“永久记忆”,2028美国会耗尽能源储备

AI的“永久记忆”时代即将来临 谷歌前CEO施密特揭示了AI技术的前景&#xff0c;他相信即将在2025年迎来一场伟大的变化。AI将实现“永久记忆”&#xff0c;改变我们与科技的互动过程。施密特将现有的AI上下文窗口比作人类的短期记忆&#xff0c;难以持久保存信息。他的设想是…...

【视频笔记】基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil【持续更新】

视频链接: 基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil 从头编写一个视觉语言模型:PloyGamma,是谷歌的一个模型 1:原始图像 2:视觉编码器(本文是viT),通过对比学习进行训练。这个对比学习最开始是CLIP,后来被谷歌改成了SigLIP 3:线性投影层 4:如何将图…...

解决 C++ 中头文件相互引用和解耦问题

在 C 中&#xff0c;当多个 .h 文件相互引用时&#xff0c;可能会导致 循环依赖 或 头文件冗余 问题&#xff0c;进而引发编译时间延迟、代码复杂度增加等问题。为了有效地解耦和组织代码&#xff0c;可以采用以下几种策略和思想&#xff1a; 1. 前向声明&#xff08;Forward …...

河马剧场(短剧)APP的邀请码怎么填写

上篇给大家说到河马剧场免费看短剧还能领5.2元3天vip会员&#xff0c;本文就说一下河马剧场河马短剧APP的邀请码怎么填写。 河马短剧APP填写邀请码分三步&#xff1a; 1、安装登陆河马短剧APP 2、点击底部导航栏中间的“福利” 3、往下划会看到“填写邀请码领3天vip” 4、…...

01:C语言的本质

C语言的本质 1、ARM架构与汇编2、局部变量初始化与空间分配2.1、局部变量的初始化2.1、局部变量数组初始化 3、全局变量/静态变量初始化化与空间分配4、堆空间 1、ARM架构与汇编 ARM简要架构如下&#xff1a;CPU&#xff0c;ARM(能读能写)&#xff0c;Flash&#xff08;能读&a…...

第1章:数据库基础

第1章&#xff1a;数据库基础 1.1 数据库概述 1.1.1 什么是数据库 数据库的定义数据库的发展历程数据库的重要性 1.1.2 关系型数据库简介 关系型数据库模型常见的关系型数据库关系型数据库的特点 1.1.3 MySQL在企业中的应用 Web应用电商平台金融系统大数据存储 1.2 数据…...

C++教程 | string类的定义和初始化方法

在C中&#xff0c;string是标准库中用于处理字符串的类&#xff0c;定义在 头文件中&#xff0c;它提供了方便、灵活的字符串操作功能。以下是一些常见的定义和初始化string对象的方法&#xff1a; 1. 默认初始化 可以直接定义一个空的string对象&#xff0c;语法如下&#x…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...

第2篇:BLE 广播与扫描机制详解

本文是《BLE 协议从入门到专家》专栏第二篇,专注于解析 BLE 广播(Advertising)与扫描(Scanning)机制。我们将从协议层结构、广播包格式、设备发现流程、控制器行为、开发者 API、广播冲突与多设备调度等方面,全面拆解这一 BLE 最基础也是最关键的通信机制。 一、什么是 B…...