数据挖掘——朴素贝叶斯分类
数据挖掘——朴素贝叶斯分类
- 朴素贝叶斯分类
- 极大后验假设
- 独立性假设
- 贝叶斯分类器总结
朴素贝叶斯分类
什么是分类?
- 找出描述和区分数据类或概念的模型,以便能够使用模型预测未知的对象的类标号
概念区分
- 分类与回归
- 分类是预测分类(离散、无序)标号
- 回归建立连续值函数模型
分类与聚类
- 分类是有监督学习,提供了训练元组的类标号
- 聚类是无监督学习,不依赖有类标号的训练实例
极大后验假设
-
极大后验假设定义:学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(Maximumaposteriori:MAP)
-
确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下:
h M A P = max h ∈ H P ( h ∣ D ) = max h ∈ H P ( D ∣ h ) P ( h ) / P ( D ) = max h ∈ H P ( D ∣ h ) P ( h ) h_{M A P}=\max _{h \in H} P(h \mid D) =\max _{h \in H} \mathrm{P}(D \mid h) \mathrm{P}(h) / P(D)=\max _{h \in H} \mathrm{P}(D \mid h) \mathbf{P}(\mathrm{h}) hMAP=h∈HmaxP(h∣D)=h∈HmaxP(D∣h)P(h)/P(D)=h∈HmaxP(D∣h)P(h)


计算 P < a 1 , a 2 , … , a n > ∣ h ) P<a_1,a_2,…,a_n > | ℎ) P<a1,a2,…,an>∣h) 时,当维度过高时,可用数据变得很稀疏,难以获得结果。
独立性假设
假设D的属性𝐚𝐢之间相互独立

优点
- 获得估计的 P ( a i ∣ h ) P(a_i | h ) P(ai∣h)比 P ( < a 1 , a 2 , … , a n > ∣ h ) P(<a_1,a_2,…,a_n > | h ) P(<a1,a2,…,an>∣h)容易很多
- 如果D的属性之间不满足相互独立,朴素贝叶斯分类的结果是贝叶斯分类的近似
例题:
链接:https://www.nowcoder.com/questionTerminal/f25c433b9b0d42659d2cf3b39a8367ae
假定某同学使用Naive Bayesian(NB)分类模型时,不小心将训练数据的两个维度搞重复了,那么关于NB的说法中正确的是:
A.这个被重复的特征在模型中的决定作用会被加强
B.模型效果相比无重复特征的情况下精确度会降低
C.如果所有特征都被重复一遍,得到的模型预测结果相对于不重复的情况下的模型预测结果一样。
D.当两列特征高度相关时,无法用两列特征相同时所得到的结论来分析问题
E.NB可以用来做最小二乘回归
F.以上说法都不正确
答案:BD
解析:总结就是,对于特征独立型的模型,当存在高度相关特征的时候,由于冗余特征并没有增加数据的信息,但是它却对模型分类的 置信度产生了影响,冗余特征产生的效果也会叠加在模型中,从而使得模型效果变差。
根据公式,假如特征重复,那么p(x1/y)就会双倍,对于小于1得数相乘后概率会变小,所以特征会变弱,因此这个重复的特征在模型中的决定作用会减弱。
贝叶斯分类器总结
本质上是同时考虑了先验概率和似然概率的重要性
特点
- 属性可以离散、也可以连续
- 数学基础坚实、分类效率稳定
- 对缺失和噪声数据不太敏感
- 属性如果不相关,分类效果很好
相关文章:
数据挖掘——朴素贝叶斯分类
数据挖掘——朴素贝叶斯分类 朴素贝叶斯分类极大后验假设独立性假设贝叶斯分类器总结 朴素贝叶斯分类 什么是分类? 找出描述和区分数据类或概念的模型,以便能够使用模型预测未知的对象的类标号 概念区分 分类与回归 分类是预测分类(离散、…...
unity中的UI系统---GUI
一、工作原理和主要作用 1.GUI是什么? 即即时模式游戏用户交互界面(IMGUI),在unity中一般简称为GUI,它是一个代码驱动的UI系统。 2.GUI的主要作用 2.1作为程序员的调试工具,创建游戏内调测试工具 2.2为…...
鸿蒙Flutter实战:15-Flutter引擎Impeller鸿蒙化、性能优化与未来
Flutter 技术原理 Flutter 是一个主流的跨平台应用开发框架,基于 Dart 语言开发 UI 界面,它将描述界面的 Dart 代码直接编译成机器码,并使用渲染引擎调用 GPU/CPU 渲染。 渲染引擎的优势 使用自己的渲染引擎,这也是 Flutter 与其…...
C语言冒泡排序教程简介
冒泡排序(Bubble Sort)是一种简单的排序算法,因其工作原理像气泡一样逐渐上浮而得名。其基本思想是通过一轮一轮地比较相邻的元素,将较大的元素逐步“冒泡”到数组的尾部。 在本篇博客中,我们将详细讲解冒泡排序的基本…...
Fabric链码部署测试
参考链接:运行 Fabric 应用程序 — Hyperledger Fabric Docs 主文档 (hyperledger-fabric.readthedocs.io) (2)fabric2.4.3部署运行自己的链码 - 知乎 (zhihu.com) Fabric2.0测试网络部署链码 - 辉哥哥~ - 博客园 (cnblogs.com) 1.启动测试…...
k620老显卡,装cuda.等。
CUDA安装教程(超详细)-CSDN博客 1.下载支持12.0以上的驱动 NVIDIA RTX Driver Release 550 R550 U12 (553.50) | Windows 11 解压。安装。一路下一步。查看结果 2.下载 cuda CUDA Toolkit Archive | NVIDIA Developer 安装cuda时,第一次…...
网站常用功能模块-鉴权
一:JWT是什么? 常用鉴权方式有很多种,今天主要介绍基于token的鉴权方式JWT(Json JSON Web Token)。因为这种方式实现起来方便快捷。整体实现逻辑如下 第一次登陆时,前端携带账号和密码请求登录接口。服务…...
直接插入排序、折半插入排序、2路插入排序、希尔排序
本篇是排序专栏博客的第一篇,主要探讨以 “插入” 为核心思想的排序算法该如何实现 文章目录 一、前言二、直接插入排序1. 算法思想与操作分析2. 代码实现version 1version 2 3. 复杂度分析 三、折半插入排序1. 算法思想与操作分析2. 代码实现3. 复杂度分析 四、2路…...
FQ-GAN代码解析
主要看 model 、loss 和 data 部分如何实现和处理的。 model—VQ_modelsVQModelEncoderVectorQuantizerDecoder loss—VQLoss_triple_codebook model—VQ_models 创建vq_model直接根据传入的模型压缩倍率8/16初始化对应的VQ_8/VQ_16,两者都是初始化一个VQModel的类…...
如何恢复已删除的 Telegram 消息 [iOSamp;Android]
Telegram 是一款功能强大的消息应用程序,因其易用性、隐私保护和众多炫酷功能而深受用户喜爱。然而,有时我们会不小心删除重要的消息。在这种情况下你应该做什么? 本文将为您提供简单有效的解决方案来恢复 Telegram 上已删除的消息ÿ…...
asp.net core中的 Cookie 和 Session
在 Web 开发中,用户会话管理是非常重要的,尤其是在需要保持用户状态和身份验证的应用中。ASP.NET Core 提供了多种状态管理技术,如 Cookie 和 Session,它们可以帮助你管理用户会话、存储数据并实现用户身份验证等功能。下面将详细…...
Python实现一个简单的 HTTP echo 服务器
一个用来做测试的简单的 HTTP echo 服务器。 from http.server import HTTPServer, BaseHTTPRequestHandler import jsonclass EchoHandler(BaseHTTPRequestHandler):def do_GET(self):# 构造响应数据response_data {path: self.path,method: GET,headers: dict(self.headers…...
Ruby 中文编码
Ruby 中文编码 在 Ruby 编程语言中处理中文编码是一个常见的需求,尤其是在中国和其他使用中文的地区。Ruby 是一种动态、开放源代码的编程语言,它支持多种字符编码,包括中文编码。本文将探讨在 Ruby 中处理中文编码的几种方法,以…...
淘金优化算法的信息共享与更新机制改进
淘金优化算法作为一种模拟自然界淘金过程的启发式搜索算法,在解决复杂优化问题时展现出独特优势。然而,其性能在很大程度上依赖于信息共享与更新机制的有效性。传统机制在面对高维、多模态等复杂问题时,往往存在信息交流不畅、更新滞后等问题,导致算法陷入局部最优或收敛速…...
Python中的ast.literal_eval:安全地解析字符串为Python对象
Python中的ast.literal_eval:安全地解析字符串为Python对象 什么是ast.literal_eval?为什么说它是“安全”的? 如何使用ast.literal_eval?示例1:将字符串转换为列表示例2:将字符串转换为字典示例3ÿ…...
【AI数学基础】线性代数:内积和范数
(观前提醒,这是工科AI相关的数学基础的学习笔记,不是数学专业的文章,所以没有严谨的证明和定义,数院大神请勿批评) 2. 内积和范数 2.1 内积的定义 从代数的角度来说,内积是两个向量之间的一种…...
Go语言的 的泛型(Generics)核心知识
Go语言的泛型(Generics)核心知识 引言 在编程语言的发展历程中,泛型是一项重要的特性。它使得程序员能够编写更加灵活和可重用的代码,减少了代码重复,提高了类型安全性和性能。从最初的C和Java,到现代的R…...
C++vector
1. vector 的介绍及使用 1.1vector的介绍 vector的文档介绍 1.vector是表示可变大小数组的序列容器 2.就像数组一样,vector也采用的连续存储空间来存储元素,也就是意味着可以采用下标对vector 的元素进行访问,和数组一样高效但是又不像数组…...
如何配置【Docker镜像】加速器+【Docker镜像】的使用
一、配置Docker镜像加速器 1. 安装/升级容器引擎客户端 推荐安装1.11.2以上版本的容器引擎客户端 2. 配置镜像加速器 针对容器引擎客户端版本大于1.11.2的用户 以root用户登录容器引擎所在的虚拟机 修改 "/etc/docker/daemon.json" 文件(如果没有…...
Docker--Docker Network(网络)
Docker Network(网络)是Docker容器之间和容器与外部网络之间的通信和连接的一种机制。以下是对Docker Network的详细解释: 一、Docker网络的重要性 Docker容器网络是为应用程序所创造的虚拟环境的一部分,它能让应用从宿主机操作…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果**被广泛应用,作为提升模型…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
