数据挖掘——朴素贝叶斯分类
数据挖掘——朴素贝叶斯分类
- 朴素贝叶斯分类
- 极大后验假设
- 独立性假设
- 贝叶斯分类器总结
朴素贝叶斯分类
什么是分类?
- 找出描述和区分数据类或概念的模型,以便能够使用模型预测未知的对象的类标号
概念区分
- 分类与回归
- 分类是预测分类(离散、无序)标号
- 回归建立连续值函数模型
分类与聚类
- 分类是有监督学习,提供了训练元组的类标号
- 聚类是无监督学习,不依赖有类标号的训练实例
极大后验假设
-
极大后验假设定义:学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(Maximumaposteriori:MAP)
-
确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下:
h M A P = max h ∈ H P ( h ∣ D ) = max h ∈ H P ( D ∣ h ) P ( h ) / P ( D ) = max h ∈ H P ( D ∣ h ) P ( h ) h_{M A P}=\max _{h \in H} P(h \mid D) =\max _{h \in H} \mathrm{P}(D \mid h) \mathrm{P}(h) / P(D)=\max _{h \in H} \mathrm{P}(D \mid h) \mathbf{P}(\mathrm{h}) hMAP=h∈HmaxP(h∣D)=h∈HmaxP(D∣h)P(h)/P(D)=h∈HmaxP(D∣h)P(h)


计算 P < a 1 , a 2 , … , a n > ∣ h ) P<a_1,a_2,…,a_n > | ℎ) P<a1,a2,…,an>∣h) 时,当维度过高时,可用数据变得很稀疏,难以获得结果。
独立性假设
假设D的属性𝐚𝐢之间相互独立

优点
- 获得估计的 P ( a i ∣ h ) P(a_i | h ) P(ai∣h)比 P ( < a 1 , a 2 , … , a n > ∣ h ) P(<a_1,a_2,…,a_n > | h ) P(<a1,a2,…,an>∣h)容易很多
- 如果D的属性之间不满足相互独立,朴素贝叶斯分类的结果是贝叶斯分类的近似
例题:
链接:https://www.nowcoder.com/questionTerminal/f25c433b9b0d42659d2cf3b39a8367ae
假定某同学使用Naive Bayesian(NB)分类模型时,不小心将训练数据的两个维度搞重复了,那么关于NB的说法中正确的是:
A.这个被重复的特征在模型中的决定作用会被加强
B.模型效果相比无重复特征的情况下精确度会降低
C.如果所有特征都被重复一遍,得到的模型预测结果相对于不重复的情况下的模型预测结果一样。
D.当两列特征高度相关时,无法用两列特征相同时所得到的结论来分析问题
E.NB可以用来做最小二乘回归
F.以上说法都不正确
答案:BD
解析:总结就是,对于特征独立型的模型,当存在高度相关特征的时候,由于冗余特征并没有增加数据的信息,但是它却对模型分类的 置信度产生了影响,冗余特征产生的效果也会叠加在模型中,从而使得模型效果变差。
根据公式,假如特征重复,那么p(x1/y)就会双倍,对于小于1得数相乘后概率会变小,所以特征会变弱,因此这个重复的特征在模型中的决定作用会减弱。
贝叶斯分类器总结
本质上是同时考虑了先验概率和似然概率的重要性
特点
- 属性可以离散、也可以连续
- 数学基础坚实、分类效率稳定
- 对缺失和噪声数据不太敏感
- 属性如果不相关,分类效果很好
相关文章:
数据挖掘——朴素贝叶斯分类
数据挖掘——朴素贝叶斯分类 朴素贝叶斯分类极大后验假设独立性假设贝叶斯分类器总结 朴素贝叶斯分类 什么是分类? 找出描述和区分数据类或概念的模型,以便能够使用模型预测未知的对象的类标号 概念区分 分类与回归 分类是预测分类(离散、…...
unity中的UI系统---GUI
一、工作原理和主要作用 1.GUI是什么? 即即时模式游戏用户交互界面(IMGUI),在unity中一般简称为GUI,它是一个代码驱动的UI系统。 2.GUI的主要作用 2.1作为程序员的调试工具,创建游戏内调测试工具 2.2为…...
鸿蒙Flutter实战:15-Flutter引擎Impeller鸿蒙化、性能优化与未来
Flutter 技术原理 Flutter 是一个主流的跨平台应用开发框架,基于 Dart 语言开发 UI 界面,它将描述界面的 Dart 代码直接编译成机器码,并使用渲染引擎调用 GPU/CPU 渲染。 渲染引擎的优势 使用自己的渲染引擎,这也是 Flutter 与其…...
C语言冒泡排序教程简介
冒泡排序(Bubble Sort)是一种简单的排序算法,因其工作原理像气泡一样逐渐上浮而得名。其基本思想是通过一轮一轮地比较相邻的元素,将较大的元素逐步“冒泡”到数组的尾部。 在本篇博客中,我们将详细讲解冒泡排序的基本…...
Fabric链码部署测试
参考链接:运行 Fabric 应用程序 — Hyperledger Fabric Docs 主文档 (hyperledger-fabric.readthedocs.io) (2)fabric2.4.3部署运行自己的链码 - 知乎 (zhihu.com) Fabric2.0测试网络部署链码 - 辉哥哥~ - 博客园 (cnblogs.com) 1.启动测试…...
k620老显卡,装cuda.等。
CUDA安装教程(超详细)-CSDN博客 1.下载支持12.0以上的驱动 NVIDIA RTX Driver Release 550 R550 U12 (553.50) | Windows 11 解压。安装。一路下一步。查看结果 2.下载 cuda CUDA Toolkit Archive | NVIDIA Developer 安装cuda时,第一次…...
网站常用功能模块-鉴权
一:JWT是什么? 常用鉴权方式有很多种,今天主要介绍基于token的鉴权方式JWT(Json JSON Web Token)。因为这种方式实现起来方便快捷。整体实现逻辑如下 第一次登陆时,前端携带账号和密码请求登录接口。服务…...
直接插入排序、折半插入排序、2路插入排序、希尔排序
本篇是排序专栏博客的第一篇,主要探讨以 “插入” 为核心思想的排序算法该如何实现 文章目录 一、前言二、直接插入排序1. 算法思想与操作分析2. 代码实现version 1version 2 3. 复杂度分析 三、折半插入排序1. 算法思想与操作分析2. 代码实现3. 复杂度分析 四、2路…...
FQ-GAN代码解析
主要看 model 、loss 和 data 部分如何实现和处理的。 model—VQ_modelsVQModelEncoderVectorQuantizerDecoder loss—VQLoss_triple_codebook model—VQ_models 创建vq_model直接根据传入的模型压缩倍率8/16初始化对应的VQ_8/VQ_16,两者都是初始化一个VQModel的类…...
如何恢复已删除的 Telegram 消息 [iOSamp;Android]
Telegram 是一款功能强大的消息应用程序,因其易用性、隐私保护和众多炫酷功能而深受用户喜爱。然而,有时我们会不小心删除重要的消息。在这种情况下你应该做什么? 本文将为您提供简单有效的解决方案来恢复 Telegram 上已删除的消息ÿ…...
asp.net core中的 Cookie 和 Session
在 Web 开发中,用户会话管理是非常重要的,尤其是在需要保持用户状态和身份验证的应用中。ASP.NET Core 提供了多种状态管理技术,如 Cookie 和 Session,它们可以帮助你管理用户会话、存储数据并实现用户身份验证等功能。下面将详细…...
Python实现一个简单的 HTTP echo 服务器
一个用来做测试的简单的 HTTP echo 服务器。 from http.server import HTTPServer, BaseHTTPRequestHandler import jsonclass EchoHandler(BaseHTTPRequestHandler):def do_GET(self):# 构造响应数据response_data {path: self.path,method: GET,headers: dict(self.headers…...
Ruby 中文编码
Ruby 中文编码 在 Ruby 编程语言中处理中文编码是一个常见的需求,尤其是在中国和其他使用中文的地区。Ruby 是一种动态、开放源代码的编程语言,它支持多种字符编码,包括中文编码。本文将探讨在 Ruby 中处理中文编码的几种方法,以…...
淘金优化算法的信息共享与更新机制改进
淘金优化算法作为一种模拟自然界淘金过程的启发式搜索算法,在解决复杂优化问题时展现出独特优势。然而,其性能在很大程度上依赖于信息共享与更新机制的有效性。传统机制在面对高维、多模态等复杂问题时,往往存在信息交流不畅、更新滞后等问题,导致算法陷入局部最优或收敛速…...
Python中的ast.literal_eval:安全地解析字符串为Python对象
Python中的ast.literal_eval:安全地解析字符串为Python对象 什么是ast.literal_eval?为什么说它是“安全”的? 如何使用ast.literal_eval?示例1:将字符串转换为列表示例2:将字符串转换为字典示例3ÿ…...
【AI数学基础】线性代数:内积和范数
(观前提醒,这是工科AI相关的数学基础的学习笔记,不是数学专业的文章,所以没有严谨的证明和定义,数院大神请勿批评) 2. 内积和范数 2.1 内积的定义 从代数的角度来说,内积是两个向量之间的一种…...
Go语言的 的泛型(Generics)核心知识
Go语言的泛型(Generics)核心知识 引言 在编程语言的发展历程中,泛型是一项重要的特性。它使得程序员能够编写更加灵活和可重用的代码,减少了代码重复,提高了类型安全性和性能。从最初的C和Java,到现代的R…...
C++vector
1. vector 的介绍及使用 1.1vector的介绍 vector的文档介绍 1.vector是表示可变大小数组的序列容器 2.就像数组一样,vector也采用的连续存储空间来存储元素,也就是意味着可以采用下标对vector 的元素进行访问,和数组一样高效但是又不像数组…...
如何配置【Docker镜像】加速器+【Docker镜像】的使用
一、配置Docker镜像加速器 1. 安装/升级容器引擎客户端 推荐安装1.11.2以上版本的容器引擎客户端 2. 配置镜像加速器 针对容器引擎客户端版本大于1.11.2的用户 以root用户登录容器引擎所在的虚拟机 修改 "/etc/docker/daemon.json" 文件(如果没有…...
Docker--Docker Network(网络)
Docker Network(网络)是Docker容器之间和容器与外部网络之间的通信和连接的一种机制。以下是对Docker Network的详细解释: 一、Docker网络的重要性 Docker容器网络是为应用程序所创造的虚拟环境的一部分,它能让应用从宿主机操作…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
