TiDB 升级至高版本提示'mysql.tidb_runaway_watch' doesn't exist 问题处理
作者: asd80703406 原文来源: https://tidb.net/blog/90394c97
背景
近期发现很多人从低版本升级至TiDB v7 或者v8版本,均遇到了tidb-server启动失败,提示报错如下:
["get runaway watch record failed"] [error="[schema:1146]Table 'mysql.tidb_runaway_watch' doesn't exist"]
["try to get new runaway watch"] [error="[schema:1146]Table 'mysql.tidb_runaway_watch' doesn't exist"]
社区解决方案
社区很多人的处理方式归类为以下几种方式:
方法1、多次启停tidb-server进程,自动就成功了。 这个也是我自己偶然间重试后,发现的一个方法,确实可以,但是需要多次stop tidb-4000 ; start tidb-4000;
方法2、提前创建升级需要的表,比如 mysql.tidb_runaway_watch ,参考链接: https://asktug.com/t/topic/1018496/7 ,参考代码 bootstrap.go 。 亲测,依然无法一次成功。
本人亲测升级方案
接下来分享我多次重试后的升级方案
本人环境:TiDB v5.3.4 升级至 v7.5.1, 3PD + 3 TIKV + 3 tidb
升级步骤
1、停止集群
tiup cluster stop $cluster_name -y
2、升级tiup组件
cd tidb-community-server-v7.5.1-linux-amd
cp -rp keys ~/.tiup/
tiup mirror merge ../tidb-community-toolkit-v7.5.1-linux-amd
3、升级cluster组件
tiup install cluster
4、升级集群(我这里是离线升级法)
tiup cluster upgrade $cluster_name v7.5.1 --offline -y --wait-timeout 3600
核心升级步骤(分组件启动)
要想升级不报错,启动升级后集群需要分组件启动
5、启动集群PD节点
tiup cluster start $cluster_name -R pd
6、启动集群TIKV节点
tiup cluster start $cluster_name -R tikv
7、启动节点某一台tidb-server进程( 重点来了 )
tiup cluster start $cluster_name -N IP:PORT
只启动一台tidb-server,这样升级涉及的bootstrap.go等相关代码,就只会有一台tidb-server执行。 亲测不会有报错的情况 。
8、启动其他服务
tiup cluster start $cluster_name
官网标准步骤升级失败的原因猜测
1、低版本升级至高版本,多个tidb-server进程存在mdl锁争用,也存在锁冲突的情况
2、官方BUG,没有深挖
升级需要注意事项
1、版本间 cluster yaml文件可能存在配置不兼容的情况,升级前需要提前确认配置文件兼容性
2、硬件不兼容。 比如 高版本tiflash组件需要CPU支持avx2指令集,升级前需确认,确认命令:lscpu | grep avx2
3、其他原因请参考官网手册
吐槽一下:
专栏审核好复杂。好几天没有审核通过,感觉是有BUG。第一次提交很快审核通过,后边就delay了好几。
相关文章:
TiDB 升级至高版本提示'mysql.tidb_runaway_watch' doesn't exist 问题处理
作者: asd80703406 原文来源: https://tidb.net/blog/90394c97 背景 近期发现很多人从低版本升级至TiDB v7 或者v8版本,均遇到了tidb-server启动失败,提示报错如下: ["get runaway watch record failed"…...

GRU-PFG:利用图神经网络从股票因子中提取股票间相关性
“GRU-PFG: Extract Inter-Stock Correlation from Stock Factors with Graph Neural Network” 论文地址:https://arxiv.org/pdf/2411.18997 摘要 股票预测模型可以分为两个主要类别:第一类,例如GRU和ALSTM,这些模型仅基于股票…...

数字化供应链创新解决方案在零售行业的应用研究——以开源AI智能名片S2B2C商城小程序为例
摘要: 在数字化转型的浪潮中,零售行业正经历着前所未有的变革。特别是在供应链管理方面,线上线下融合、数据孤岛、消费者需求多样化等问题日益凸显,对零售企业的运营效率与市场竞争力构成了严峻挑战。本文深入探讨了零售行业供应…...
安卓Activity执行finish后onNewIntent也执行了
测试反应投屏时下一集可能播放不成功。 首先看一下日志: onCompletion onCast handlerMessage: 2 finish: PlayerActivityabc7fdc onPause: PlayerActivityabc7fdc onNewIntent: PlayerActivityabc7fdc onResume: PlayerActivityabc7fdc onPause: PlayerActivityab…...

数据结构.期末复习.学习笔记(c语言)
《数据结构》复习概要 一、概论 二、基础1. 基本概念2. 四种逻辑结构及特点3. 算法的概念、特性4. 算法设计的4个要求 三、线性结构1.顺序表2.单链表3.循环链表双向链表4.栈(后进先出)5.队列(先进先出) 四、树和二叉树1.树2.二叉…...

Kafaka安装与启动教程
1.下载 先去官网Apache Kafka可以查看到每个版本的发布时间。选择你要安装的版本。 然后进入linux建立要存放的文件夹,用wget命令下载 2.安装 先解压缩: tar -xvzf kafka_2.12-3.5.1.tgz -C ../ 3.配置文件 修改server.properties: cd .…...
根据docker file 编译镜像
比如给到一个Dockerfile 第一步编译镜像 cd /path/to/Dockerfiledocker build -t <DOCKER_IMAGE_NAME> . build 命令编译镜像 -t 镜像名字 . 指dockerfile 所在目录 如果遇到报错 [] Building 0.3s (3/3) FINISHED …...
联邦学习的 AI 大模型微调中,加性、选择性、重参数化和混合微调
联邦学习的 AI 大模型微调中,加性、选择性、重参数化和混合微调 在联邦学习的 AI 大模型微调中,加性、选择性、重参数化和混合微调是不同的操作方式,具体如下: 加性微调 定义与原理:加性微调是在原始模型的基础上添加额外的可训练参数来进行模型调整。这种方式不会改变原…...

android 外挂modem模块实现Telephony相关功能(上网,发短信,打电话)
一.背景 当前模块不支持Telephony相关的功能,例如上网、发短信等功能,就需要外挂另一个模块实现此功能,这就是外挂modem模块实现Telephony功能,此篇主要就是说实现外挂modem模块功能中的Framework层实现逻辑,如下流程是在Android 13中实现的外挂pcie模块的流程 二.ril库相…...

【计算机视觉技术 - 人脸生成】2.GAN网络的构建和训练
GAN 是一种常用的优秀的图像生成模型。我们使用了支持条件生成的 cGAN。下面介绍简单 cGAN 模型的构建以及训练过程。 2.1 在 model 文件夹中新建 nets.py 文件 import torch import torch.nn as nn# 生成器类 class Generator(nn.Module):def __init__(self, nz100, nc3, n…...

数据中台与数据治理服务方案[50页PPT]
本文概述了数据中台与数据治理服务方案的核心要点。数据中台作为政务服务数据化的核心,通过整合各部门业务系统数据,进行建模与加工,以新数据驱动政府管理效率提升与政务服务能力增强。数据治理则聚焦于解决整体架构问题,确保数据…...

【Qt】将控件均匀分布到圆环上
1. 关键代码 for(int i0; i<10; i){/*m_panLabelIcon - 大圆环控件m_slotsIcon[i] - 小圆控件*/QString idxStr QString::number(i1);m_slotsIcon[i] new QLabel(m_panLabelIcon);m_slotsIcon[i]->setFont(ftSlot);m_slotsIcon[i]->setText(idxStr);m_slotsIcon[i]-…...
第四、五章补充:线代本质合集(B站:小崔说数)
视频1:线性空间 原视频:【线性代数的本质】向量空间、基向量的几何解释_哔哩哔哩_bilibili 很多同学在学习线性代数的时候,会遇到一个困扰,就是不知道什么是线性空间。...
2025年贵州省职业院校技能大赛信息安全管理与评估赛项规程
贵州省职业院校技能大赛赛项规程 赛项名称: 信息安全管理与评估 英文名称: Information Security Management and Evaluation 赛项组别: 高职组 赛项编号: GZ032 1 2 一、赛项信息 赛项类别 囚每年赛 □隔年赛(□单数年…...
松鼠状态机流转-@Transit
疑问 状态from to合法性校验,都是在代码中手动进行的吗,不是状态机自动进行的? 注解中from状态,代表当前状态 和谁校验:上下文中初始状态 怎么根据注解找到执行方法的 分析代码,创建运单,怎…...

微信小程序调用 WebAssembly 烹饪指南
我们都是在夜里崩溃过的俗人,所幸终会天亮。明天就是新的开始,我们会变得与昨天不同。 一、Rust 导出 wasm 参考 wasm-bindgen 官方指南 https://wasm.rust-lang.net.cn/wasm-bindgen/introduction.html wasm-bindgen,这是一个 Rust 库和 CLI…...
# LeetCode Problem 2038: 如果相邻两个颜色均相同则删除当前颜色 (Winner of the Game)
LeetCode Problem 2038: 如果相邻两个颜色均相同则删除当前颜色 (Winner of the Game) 在本篇博客中,我们将深入探讨 LeetCode 第2038题——如果相邻两个颜色均相同则删除当前颜色。该问题涉及字符串处理与游戏策略,旨在考察如何在给定规则下判断游戏的…...

Redis面试相关
Redis开篇 使用场景 缓存 缓存穿透 解决方法一: 方法二: 通过多次hash来获取对应的值。 小结 缓存击穿 缓存雪崩 打油诗 双写一致性 两种不同的要求 强一致 读锁代码 写锁代码 强一致,性能低。 延迟一致 方案一:消息队列 方…...

4.CSS文本属性
4.1文本颜色 div { color:red; } 属性值预定义的颜色值red、green、blue、pink十六进制#FF0000,#FF6600,#29D794RGB代码rgb(255,0,0)或rgb(100%,0%,0%) 4.2对齐文本 text-align 属性用于设置元素内文本内容的水平对齐方式。 div{ text-align:center; } 属性值解释left左对齐ri…...

Mongo高可用架构解决方案
Mongo主从复制哪些事(仅适用特定场景) 对数据强一致性要求不高的场景,一般微服务架构中不推荐 master节点可读可写操作,当数据有修改时,会将Oplog(操作日志)同步到所有的slave节点上。那么对于从节点来说仅只读,所有slave节点从master节点同步数据,然而从节点之间互相…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...