【pytorch】注意力机制-1
1 注意力提示
1.1 自主性的与非自主性的注意力提示
非自主性提示:
可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。
自主性提示
注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查询(query)。给定任何查询,注意力机制通过注意力汇聚(attention pooling)将选择引导至感官输入(sensory inputs,例如中间特征表示)。在注意力机制中,这些感官输入被称为值(value)。

注意力机制通过注意力汇聚将查询(自主性提示)和键(非自主性提示)结合在一起,实现对值(感官输入)的选择倾向
1.2 注意力的可视化
平均汇聚层可以被视为输入的加权平均值, 其中各输入的权重是一样的。 实际上,注意力汇聚得到的是加权平均的总和值, 其中权重是在给定的查询和不同的键之间计算得出的。
为了可视化注意力权重,需要定义一个show_heatmaps函数。 其输入matrices的形状是 (要显示的行数,要显示的列数,查询的数目,键的数目)。
#@save
def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5),cmap='Reds'):"""显示矩阵热图"""d2l.use_svg_display()num_rows, num_cols = matrices.shape[0], matrices.shape[1]fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,sharex=True, sharey=True, squeeze=False)for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):pcm = ax.imshow(matrix.detach().numpy(), cmap=cmap)if i == num_rows - 1:ax.set_xlabel(xlabel)if j == 0:ax.set_ylabel(ylabel)if titles:ax.set_title(titles[j])fig.colorbar(pcm, ax=axes, shrink=0.6);
在本例子中,仅当查询和键相同时,注意力权重为1,否则为0。
attention_weights = torch.eye(10).reshape((1, 1, 10, 10))
show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries')

2 注意力汇聚:Nadaraya-Watson 核回归
注意力机制的主要成分:查询(自主提示)和键(非自主提示)之间的交互形成了注意力汇聚;注意力汇聚有选择地聚合了值(感官输入)以生成最终的输出。
考虑下面这个回归问题:给定的成对的“输入-输出”数据集 {(x1, y1), . . . ,(xn, yn)},如何学习f来预测任意新输入x的输出yˆ = f(x)?
根据下面的非线性函数生成一个人工数据集,其中加入的噪声项为ϵ:

其中ϵ服从均值为0和标准差为0.5的正态分布。在这里生成了50个训练样本和50个测试样本。为了更好地可视化之后的注意力模式,需要将训练样本进行排序。
n_train = 50 # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5) # 排序后的训练样本
def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,)) # 训练样本的输出
x_test = torch.arange(0, 5, 0.1) # 测试样本
y_truth = f(x_test) # 测试样本的真实输出
n_test = len(x_test) # 测试样本数
n_test
下面的函数将绘制所有的训练样本(样本由圆圈表示),不带噪声项的真实数据生成函数f(标记为“Truth”),以及学习得到的预测函数(标记为“Pred”)。
def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);
2.1 平均汇聚
基于平均汇聚来计算所有训练样本输出值的平均值:

y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)

显然, 真实函数𝑓(“Truth”)和预测函数(“Pred”)相差很大。
2.2 非参数注意力汇聚
平均汇聚忽略了输入xi,于是根据输入的位置对输出yi进行加权:

K是核(kernel)。所描述的估计器被称为 Nadaraya-Watson核回归。
受此启发,我们可以从注意力机制框架的角度重写,成为一个更加通用的注意力汇聚(attention pooling)公式:

x是查询,(xi, yi)是键值对。注意力汇聚是yi的加权平均。将查询x和键xi之间的关系建模为 注意力权重(attention weight)α(x, xi),这个权重将被分配给每一个对应值yi。对于任何查询,模型在所有键值对注意力权重都是一个有效的概率分布:它们是非负的,并且总和为1。
举个例子:
考虑一个高斯核(Gaussian kernel),其定义为:

将高斯核代入可以得到:

在上面的表达式中,如果一个键xi越是接近给定的查询x,那么分配给这个键对应值yi的注意力权重就会越大,也就“获得了更多的注意力”。
Nadaraya‐Watson核回归是一个非参数模型。接下来,我们将基于这个非参数的注意力汇聚模型来绘制预测结果。从绘制的结果会发现新的模型预测线是平滑的,并且比平均汇聚的预测更接近真实。
# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)

现在来观察注意力的权重。 这里测试数据的输入相当于查询,而训练数据的输入相当于键。 因为两个输入都是经过排序的,因此由观察可知“查询-键”对越接近, 注意力汇聚的[注意力权重]就越高。
d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

2.3 带参数注意力汇聚
在下面的查询x和键xi之间的距离乘以可学习参数w:

接下来训练上面这个模型来学习注意力汇聚的参数w。
批量矩阵乘法
为了更有效地计算小批量数据的注意力,我们可以利用深度学习开发框架中提供的批量矩阵乘法。
假设第一个小批量数据包含n个矩阵X1, . . . , Xn,形状为a × b,第二个小批量包含n个矩阵Y1, . . . , Yn,形状为b × c。它们的批量矩阵乘法得到n个矩阵 X1Y1, . . . , XnYn,形状为a × c。因此,假定两个张量的形状分别是(n, a, b)和(n, b, c),它们的批量矩阵乘法输出的形状为(n, a, c)。

在注意力机制的背景中,我们可以[使用小批量矩阵乘法来计算小批量数据中的加权平均值。

定义模型
定义Nadaraya‐Watson核回归的带参数版本为:
class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)
训练
将训练数据集变换为键和值用于训练注意力模型。 在带参数的注意力汇聚模型中, 任何一个训练样本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算, 从而得到其对应的预测输出。
# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
训练带参数的注意力汇聚模型时,使用平方损失函数MSE和随机梯度下降SGD。
net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))
训练完带参数的注意力汇聚模型后可以发现: 尝试拟合带噪声的训练数据,
# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)

预测结果绘制的线不如之前非参数模型的平滑。为什么新的模型更不平滑了呢? 下面看一下输出结果的绘制图:
d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

与非参数的注意力汇聚模型相比, 带参数的模型加入可学习的参数后, 曲线在注意力权重较大的区域变得更不平滑。
相关文章:
【pytorch】注意力机制-1
1 注意力提示 1.1 自主性的与非自主性的注意力提示 非自主性提示: 可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。 自主性提示 注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查…...
html 元素中的data-v-xxxxxx 是什么?为什么有的元素有?有的没有?
data-v-xxxxxx 在 HTML 中,data-v 属性通常与 Vue.js 或其他前端框架一起使用,特别是当这些框架结合 CSS 预处理器(如 Sass、Less)和单文件组件(Single File Components, SFCs)时。data-v 属性的主要目的是…...
第27周:文献阅读及机器学习
目录 摘要 Abstract 一、文献阅读 发现问题 研究方法 CNN-LSTM DT SVR 创新点 案例分析 数据准备 模型性能 预测模型的实现 仿真实验及分析 二、LSTM 1、基本结构 2、具体步骤 3、举例说明 4、原理理解 总结 摘要 本周阅读文献《Short-term water qua…...
回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机(ELM) 极限学习机是一种单层前馈神经网络,具有训练速…...
Swift Protocols(协议)、Extensions(扩展)、Error Handling(错误处理)、Generics(泛型)
最近在学习 Swift,总结相关知识 1. Protocols(协议) 1.1 协议的定义和实现 协议(protocol) 是一种定义方法和属性的蓝图,任何类、结构体或枚举都可以遵循协议。遵循协议后,需要实现协议中定义…...
.NET中的强名称和签名机制
.NET中的强名称(Strong Name)和签名机制是.NET Framework引入的一种安全性和版本控制机制。以下是关于.NET中强名称和签名机制的详细解释: 强名称 定义: 强名称是由程序集的标识加上公钥和数字签名组成的。程序集的标识包括简单文…...
使用 NestJS 构建高效且模块化的 Node.js 应用程序,从安装到第一个 API 端点:一步一步指南
一、安装 NestJS 要开始构建一个基于 NestJS 的应用,首先需要安装一系列依赖包。以下是必要的安装命令: npm i --save nestjs/core nestjs/common rxjs reflect-metadata nestjs/platform-express npm install -g ts-node包名介绍nestjs/coreNestJS 框…...
2025年大模型技术发展趋势展望:高速旋转的飞轮
2025年大模型技术发展趋势展望 引言1. 多模态大模型(MMM):从单一模态到高级模态融合2. 轻量化大模型:从大参数模型到小参数模型3. 强推理大模型:从概率生成到逻辑推理4. 移动端/边缘端Agent:从云端到本地5.…...
java中类的加载过程及各个阶段与运行时数据区中堆和方法区存储内容
java中类的加载过程 Java 类的加载是 JVM 将 字节码文件(.class 文件)加载到内存并最终转化为运行时数据的过程。它分为以下 五个主要阶段:加载、验证、准备、解析、初始化,每个阶段都有对应的内存位置存储相关信息。以下是类加载…...
渗透测试--Web基础漏洞利用技巧
渗透测试--Web基础漏洞利用技巧 本文章写了Web基础漏洞中一些不那么常见的利用技巧,而不谈及漏洞的原理以及常见用法。 SQL 俺是SQLmap党,哈哈,所以这块就不多讲了。详情可见文章《渗透测试--SQLmap_渗透测试sqlmap-CSDN博客》 XXE XXE组成…...
SpringBoot下载文件的几种方式
小文件:直接将文件一次性读取到内存中,文件大可能会导致OOM GetMapping("/download1")public void download1(HttpServletResponse response) throws IOException {// 指定要下载的文件File file new File("C:\\Users\\syd\\Desktop\\do…...
教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件
1. 安装 PyCharm 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。下载社区版(免费)或专业版(收费,提供更多功能)。按照操作系统的安装指导安装 PyCharm。安装后打开 PyCharm,并根…...
我用Ai学Android Jetpack Compose之Button
答案来自 通义千问,代码同样需要到Android Studio里实践,才能学会。完整工程代码见文末。 我要学Button,麻烦介绍一下 当然可以!Button 是 Jetpack Compose 中用于创建可点击按钮的 Composable 函数。它提供了丰富的配置选项来定…...
修改secure-file-priv参数-mysql5.7.26限制不允许导入或导出的解决方法
文章目录 前言secure_file_priv参数说明修改secure_file_priv参数的步骤 前言 本人是在sql注入的文件上传拿web shel 时所用到的写入文件权限遇到文件上传不成功的问题,记住修改后,重启mysql才生效,最后可以查看验证一下。 secure_file_priv…...
C# 设计模式(结构型模式):适配器模式
C# 设计模式(结构型模式):适配器模式 在软件开发中,我们经常会遇到需要将不同接口的组件结合在一起的情况。此时,适配器模式(Adapter Pattern)就派上了用场。它属于结构型设计模式,…...
Spring Cloud微服务多模块架构:父子工程搭建实践
一、前言 在现代微服务架构中,Spring Cloud 提供了一整套工具和技术栈来简化分布式系统的开发。为了更好地组织和管理复杂的微服务项目,使用 Maven 多模块(父子工程) 是一种高效的方法。 父子工程 是 Maven 中的一种项目结构…...
SkinnedMeshRenderer相关知识
SkinnedMeshRenderer和MeshRenderer unity中SkinnedMeshRenderer是CPU去更改顶点位置的。 而当使用MeshRenderer时,可以靠GPU来进行蒙皮(即更改顶点位置)。 SkinnedMeshRenderer是多线程处理的,在小程序游戏中,只支持…...
前端学习DAY30(水平)
子元素是在父元素的内容区中排列的,如果子元素的大小超过了父元素,则子元素会从 父元素中溢出,使用overflow属性设置父元素如何处理溢出的子元素 可选值:visible 默认值,子元素会从父元素中溢出,在父元素外…...
Spring boot 项目 Spring 注入 代理 并支持 代理对象使用 @Autowired 去调用其他服务
文章目录 类定义与依赖注入方法解析createCglibProxy注意事项setApplicationContext 方法createCglibProxy 方法 类定义与依赖注入 Service: 标识这是一个 Spring 管理的服务类。ApplicationContextAware: 实现该接口允许你在类中获取 ApplicationContext 对象,从而…...
Colyseus 与 HTTP API 的集成
Colyseus 与 HTTP API 的集成 在使用 Colyseus 开发实时多人应用时,通常需要与传统的 HTTP API 集成,例如用户身份验证、存储游戏数据、获取排行榜等。以下是 Colyseus 与 HTTP API 集成的详细介绍: 1. Colyseus 的基本架构 Colyseus 是一个…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
