【pytorch】注意力机制-1
1 注意力提示
1.1 自主性的与非自主性的注意力提示
非自主性提示:
可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。
自主性提示
注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查询(query)。给定任何查询,注意力机制通过注意力汇聚(attention pooling)将选择引导至感官输入(sensory inputs,例如中间特征表示)。在注意力机制中,这些感官输入被称为值(value)。
注意力机制通过注意力汇聚将查询(自主性提示)和键(非自主性提示)结合在一起,实现对值(感官输入)的选择倾向
1.2 注意力的可视化
平均汇聚层可以被视为输入的加权平均值, 其中各输入的权重是一样的。 实际上,注意力汇聚得到的是加权平均的总和值, 其中权重是在给定的查询和不同的键之间计算得出的。
为了可视化注意力权重,需要定义一个show_heatmaps函数。 其输入matrices的形状是 (要显示的行数,要显示的列数,查询的数目,键的数目)。
#@save
def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5),cmap='Reds'):"""显示矩阵热图"""d2l.use_svg_display()num_rows, num_cols = matrices.shape[0], matrices.shape[1]fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,sharex=True, sharey=True, squeeze=False)for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):pcm = ax.imshow(matrix.detach().numpy(), cmap=cmap)if i == num_rows - 1:ax.set_xlabel(xlabel)if j == 0:ax.set_ylabel(ylabel)if titles:ax.set_title(titles[j])fig.colorbar(pcm, ax=axes, shrink=0.6);
在本例子中,仅当查询和键相同时,注意力权重为1,否则为0。
attention_weights = torch.eye(10).reshape((1, 1, 10, 10))
show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries')
2 注意力汇聚:Nadaraya-Watson 核回归
注意力机制的主要成分:查询(自主提示)和键(非自主提示)之间的交互形成了注意力汇聚;注意力汇聚有选择地聚合了值(感官输入)以生成最终的输出。
考虑下面这个回归问题:给定的成对的“输入-输出”数据集 {(x1, y1), . . . ,(xn, yn)},如何学习f来预测任意新输入x的输出yˆ = f(x)?
根据下面的非线性函数生成一个人工数据集,其中加入的噪声项为ϵ:
其中ϵ服从均值为0和标准差为0.5的正态分布。在这里生成了50个训练样本和50个测试样本。为了更好地可视化之后的注意力模式,需要将训练样本进行排序。
n_train = 50 # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5) # 排序后的训练样本
def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,)) # 训练样本的输出
x_test = torch.arange(0, 5, 0.1) # 测试样本
y_truth = f(x_test) # 测试样本的真实输出
n_test = len(x_test) # 测试样本数
n_test
下面的函数将绘制所有的训练样本(样本由圆圈表示),不带噪声项的真实数据生成函数f(标记为“Truth”),以及学习得到的预测函数(标记为“Pred”)。
def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);
2.1 平均汇聚
基于平均汇聚来计算所有训练样本输出值的平均值:
y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)
显然, 真实函数𝑓(“Truth”)和预测函数(“Pred”)相差很大。
2.2 非参数注意力汇聚
平均汇聚忽略了输入xi,于是根据输入的位置对输出yi进行加权:
K是核(kernel)。所描述的估计器被称为 Nadaraya-Watson核回归。
受此启发,我们可以从注意力机制框架的角度重写,成为一个更加通用的注意力汇聚(attention pooling)公式:
x是查询,(xi, yi)是键值对。注意力汇聚是yi的加权平均。将查询x和键xi之间的关系建模为 注意力权重(attention weight)α(x, xi),这个权重将被分配给每一个对应值yi。对于任何查询,模型在所有键值对注意力权重都是一个有效的概率分布:它们是非负的,并且总和为1。
举个例子:
考虑一个高斯核(Gaussian kernel),其定义为:
将高斯核代入可以得到:
在上面的表达式中,如果一个键xi越是接近给定的查询x,那么分配给这个键对应值yi的注意力权重就会越大,也就“获得了更多的注意力”。
Nadaraya‐Watson核回归是一个非参数模型。接下来,我们将基于这个非参数的注意力汇聚模型来绘制预测结果。从绘制的结果会发现新的模型预测线是平滑的,并且比平均汇聚的预测更接近真实。
# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)
现在来观察注意力的权重。 这里测试数据的输入相当于查询,而训练数据的输入相当于键。 因为两个输入都是经过排序的,因此由观察可知“查询-键”对越接近, 注意力汇聚的[注意力权重]就越高。
d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')
2.3 带参数注意力汇聚
在下面的查询x和键xi之间的距离乘以可学习参数w:
接下来训练上面这个模型来学习注意力汇聚的参数w。
批量矩阵乘法
为了更有效地计算小批量数据的注意力,我们可以利用深度学习开发框架中提供的批量矩阵乘法。
假设第一个小批量数据包含n个矩阵X1, . . . , Xn,形状为a × b,第二个小批量包含n个矩阵Y1, . . . , Yn,形状为b × c。它们的批量矩阵乘法得到n个矩阵 X1Y1, . . . , XnYn,形状为a × c。因此,假定两个张量的形状分别是(n, a, b)和(n, b, c),它们的批量矩阵乘法输出的形状为(n, a, c)。
在注意力机制的背景中,我们可以[使用小批量矩阵乘法来计算小批量数据中的加权平均值。
定义模型
定义Nadaraya‐Watson核回归的带参数版本为:
class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)
训练
将训练数据集变换为键和值用于训练注意力模型。 在带参数的注意力汇聚模型中, 任何一个训练样本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算, 从而得到其对应的预测输出。
# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
训练带参数的注意力汇聚模型时,使用平方损失函数MSE和随机梯度下降SGD。
net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))
训练完带参数的注意力汇聚模型后可以发现: 尝试拟合带噪声的训练数据,
# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)
预测结果绘制的线不如之前非参数模型的平滑。为什么新的模型更不平滑了呢? 下面看一下输出结果的绘制图:
d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')
与非参数的注意力汇聚模型相比, 带参数的模型加入可学习的参数后, 曲线在注意力权重较大的区域变得更不平滑。
相关文章:

【pytorch】注意力机制-1
1 注意力提示 1.1 自主性的与非自主性的注意力提示 非自主性提示: 可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。 自主性提示 注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查…...
html 元素中的data-v-xxxxxx 是什么?为什么有的元素有?有的没有?
data-v-xxxxxx 在 HTML 中,data-v 属性通常与 Vue.js 或其他前端框架一起使用,特别是当这些框架结合 CSS 预处理器(如 Sass、Less)和单文件组件(Single File Components, SFCs)时。data-v 属性的主要目的是…...

第27周:文献阅读及机器学习
目录 摘要 Abstract 一、文献阅读 发现问题 研究方法 CNN-LSTM DT SVR 创新点 案例分析 数据准备 模型性能 预测模型的实现 仿真实验及分析 二、LSTM 1、基本结构 2、具体步骤 3、举例说明 4、原理理解 总结 摘要 本周阅读文献《Short-term water qua…...

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机(ELM) 极限学习机是一种单层前馈神经网络,具有训练速…...
Swift Protocols(协议)、Extensions(扩展)、Error Handling(错误处理)、Generics(泛型)
最近在学习 Swift,总结相关知识 1. Protocols(协议) 1.1 协议的定义和实现 协议(protocol) 是一种定义方法和属性的蓝图,任何类、结构体或枚举都可以遵循协议。遵循协议后,需要实现协议中定义…...
.NET中的强名称和签名机制
.NET中的强名称(Strong Name)和签名机制是.NET Framework引入的一种安全性和版本控制机制。以下是关于.NET中强名称和签名机制的详细解释: 强名称 定义: 强名称是由程序集的标识加上公钥和数字签名组成的。程序集的标识包括简单文…...

使用 NestJS 构建高效且模块化的 Node.js 应用程序,从安装到第一个 API 端点:一步一步指南
一、安装 NestJS 要开始构建一个基于 NestJS 的应用,首先需要安装一系列依赖包。以下是必要的安装命令: npm i --save nestjs/core nestjs/common rxjs reflect-metadata nestjs/platform-express npm install -g ts-node包名介绍nestjs/coreNestJS 框…...

2025年大模型技术发展趋势展望:高速旋转的飞轮
2025年大模型技术发展趋势展望 引言1. 多模态大模型(MMM):从单一模态到高级模态融合2. 轻量化大模型:从大参数模型到小参数模型3. 强推理大模型:从概率生成到逻辑推理4. 移动端/边缘端Agent:从云端到本地5.…...
java中类的加载过程及各个阶段与运行时数据区中堆和方法区存储内容
java中类的加载过程 Java 类的加载是 JVM 将 字节码文件(.class 文件)加载到内存并最终转化为运行时数据的过程。它分为以下 五个主要阶段:加载、验证、准备、解析、初始化,每个阶段都有对应的内存位置存储相关信息。以下是类加载…...
渗透测试--Web基础漏洞利用技巧
渗透测试--Web基础漏洞利用技巧 本文章写了Web基础漏洞中一些不那么常见的利用技巧,而不谈及漏洞的原理以及常见用法。 SQL 俺是SQLmap党,哈哈,所以这块就不多讲了。详情可见文章《渗透测试--SQLmap_渗透测试sqlmap-CSDN博客》 XXE XXE组成…...
SpringBoot下载文件的几种方式
小文件:直接将文件一次性读取到内存中,文件大可能会导致OOM GetMapping("/download1")public void download1(HttpServletResponse response) throws IOException {// 指定要下载的文件File file new File("C:\\Users\\syd\\Desktop\\do…...

教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件
1. 安装 PyCharm 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。下载社区版(免费)或专业版(收费,提供更多功能)。按照操作系统的安装指导安装 PyCharm。安装后打开 PyCharm,并根…...
我用Ai学Android Jetpack Compose之Button
答案来自 通义千问,代码同样需要到Android Studio里实践,才能学会。完整工程代码见文末。 我要学Button,麻烦介绍一下 当然可以!Button 是 Jetpack Compose 中用于创建可点击按钮的 Composable 函数。它提供了丰富的配置选项来定…...

修改secure-file-priv参数-mysql5.7.26限制不允许导入或导出的解决方法
文章目录 前言secure_file_priv参数说明修改secure_file_priv参数的步骤 前言 本人是在sql注入的文件上传拿web shel 时所用到的写入文件权限遇到文件上传不成功的问题,记住修改后,重启mysql才生效,最后可以查看验证一下。 secure_file_priv…...
C# 设计模式(结构型模式):适配器模式
C# 设计模式(结构型模式):适配器模式 在软件开发中,我们经常会遇到需要将不同接口的组件结合在一起的情况。此时,适配器模式(Adapter Pattern)就派上了用场。它属于结构型设计模式,…...

Spring Cloud微服务多模块架构:父子工程搭建实践
一、前言 在现代微服务架构中,Spring Cloud 提供了一整套工具和技术栈来简化分布式系统的开发。为了更好地组织和管理复杂的微服务项目,使用 Maven 多模块(父子工程) 是一种高效的方法。 父子工程 是 Maven 中的一种项目结构…...
SkinnedMeshRenderer相关知识
SkinnedMeshRenderer和MeshRenderer unity中SkinnedMeshRenderer是CPU去更改顶点位置的。 而当使用MeshRenderer时,可以靠GPU来进行蒙皮(即更改顶点位置)。 SkinnedMeshRenderer是多线程处理的,在小程序游戏中,只支持…...

前端学习DAY30(水平)
子元素是在父元素的内容区中排列的,如果子元素的大小超过了父元素,则子元素会从 父元素中溢出,使用overflow属性设置父元素如何处理溢出的子元素 可选值:visible 默认值,子元素会从父元素中溢出,在父元素外…...

Spring boot 项目 Spring 注入 代理 并支持 代理对象使用 @Autowired 去调用其他服务
文章目录 类定义与依赖注入方法解析createCglibProxy注意事项setApplicationContext 方法createCglibProxy 方法 类定义与依赖注入 Service: 标识这是一个 Spring 管理的服务类。ApplicationContextAware: 实现该接口允许你在类中获取 ApplicationContext 对象,从而…...
Colyseus 与 HTTP API 的集成
Colyseus 与 HTTP API 的集成 在使用 Colyseus 开发实时多人应用时,通常需要与传统的 HTTP API 集成,例如用户身份验证、存储游戏数据、获取排行榜等。以下是 Colyseus 与 HTTP API 集成的详细介绍: 1. Colyseus 的基本架构 Colyseus 是一个…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...