当前位置: 首页 > news >正文

RabbitMQ发布确认高级篇(RabbitMQ Release Confirmation Advanced Edition)

系统学习消息队列——RabbitMQ的发布确认高级篇

简介

‌RabbitMQ是一个开源的消息代理软件,实现了‌高级消息队列协议(AMQP)‌,主要用于在分布式系统中进行消息传递。RabbitMQ由‌‌Erlang语言编写,具有高性能、健壮性和可伸缩性,适用于各种规模的企业应用‌。

基本概念和功能

RabbitMQ作为一个消息中间件,主要功能包括接收和转发消息,支持“生产者-消费者模型”。生产者不断向消息队列中写入消息,而消费者则从队列中读取或订阅消息。RabbitMQ支持多种消息传递模式,如普通模式、工作模式、发布/订阅模式等,以满足不同的应用场景需求‌。

架构和关键组件

RabbitMQ的架构基于生产者-消费者模型,通过队列实现消息的存储和转发。队列具有先进先出(FIFO)的特性,并且可以设置持久化、独占、自动删除等属性。RabbitMQ还引入了交换机和路由键等概念,以实现更灵活和复杂的消息路由和分发机制‌。

应用场景和优势

RabbitMQ广泛应用于需要高并发处理、流量削峰、系统解耦和提高可靠性的场景。其优势包括:

  • ‌高性能‌:RabbitMQ能够处理高并发请求,确保系统的稳定运行。
  • ‌高可靠性‌:通过消息的持久化存储和故障恢复机制,确保消息不会丢失。
  • ‌灵活性‌:支持多种消息传递模式和路由规则,满足复杂的应用需求

1.消息发布确认的方案

2.消息的回退

3.备份交换机

1.消息发布确认的方案
在前面的文章中,系统学习消息队列——RabbitMQ的消息发布确认,我们一定程度上学习了消息的发布确认的基础,但是在生产环境中,由于RabbitMq的重启,RabbitMQ在重启过程中投递失败,导致消息丢失,需要手动处理和恢复。那么我们该如何保证当RabbitMQ不可用的时候,消息的稳定投递呢?

我们采取下面的方案:

我们将要发送消息做一个持久化,发送消息的时候,我们持久化一份到数据库或者缓存中,当发送消息失败的时候,我们进行一次重新发送。所以在发送消息的时候,我们要进行代码业务逻辑的处理:

yml:

server:
port:11000
spring:
rabbitmq:
host:127.0.0.1
port:5672
username:guest
password:guest
publisher-confirm-type:correlated

publisher-confirm-type这个参数一共有三种配置方法:

NONE:
禁用发布确认,是默认值。
CORRELATED:
发布消息后,交换机会触发回调方法。
SIMPLE:
有两种效果:
1:和CORRELATED一样会触发回调方法
2:发布消息成功后使用 rabbitTemplate 调用 waitForConfirms 或 waitForConfirmsOrDie 方法等待 broker 节点返回发送结果,根据返回结果来判定下一步的逻辑,要注意的点是waitForConfirmsOrDie 方法如果返回 false 则会关闭 channel,则接下来无法发送消息到 broker。

回调方法类:

@Component
@Slf4j
public class MyCallBack implements RabbitTemplate.ConfirmCallback {/*** 交换机是否收到消息的回调方法* CorrelationData 消息相关数据* ack 交换机是否收到消息* cause 交换机未收到消息的原因*/
@Overridepublic void confirm(CorrelationData correlationData, boolean ack, String cause) {
if (ack) {
log.info("交换机已经收到 id 为:{}的消息", correlationData.getId());} else {
log.info("交换机还未收到 id 为:{}消息,由于原因:{}", correlationData.getId(), cause);}}}

队列配置类:

@Configuration
publicclassConfirmQueueConfig {publicstatic final StringCONFIRM_EXCHANGE_NAME = "confirm.exchange";
publicstatic final StringCONFIRM_QUEUE_NAME = "confirm.queue";@Autowired
privateMyCallBack myCallBack;
@Autowired
privateRabbitTemplate rabbitTemplate;//依赖注入 rabbitTemplate 之后再设置它的回调对象
@PostConstruct
publicvoidinit() {rabbitTemplate.setConfirmCallback(myCallBack);}//声明业务 Exchange
@Bean("confirmExchange")
publicDirectExchangeconfirmExchange(){
returnnewDirectExchange(CONFIRM_EXCHANGE_NAME);}// 声明确认队列
@Bean("confirmQueue")
publicQueueconfirmQueue(){
returnQueueBuilder.durable(CONFIRM_QUEUE_NAME).build();}// 声明确认队列绑定关系
@Bean
publicBindingqueueBinding(@Qualifier("confirmQueue") Queue queue,
@Qualifier("confirmExchange") DirectExchange exchange){
returnBindingBuilder.bind(queue).to(exchange).with("key1");}}

生产者:

@RestController
@RequestMapping("/confirm")
@Slf4j
public class ProducerController {public static final String CONFIRM_EXCHANGE_NAME = "confirm.exchange";@Autowired
private RabbitTemplate rabbitTemplate;@GetMapping("sendMessage/{message}")public void sendMessage(@PathVariable String message) {
//指定消息 id 为 1CorrelationData correlationData1 = new CorrelationData("1");
//这个key1是有交换机的key,会发送成功String routingKey = "key1";rabbitTemplate.convertAndSend(CONFIRM_EXCHANGE_NAME, routingKey, message + routingKey, correlationData1);
//这个交换机不存在,会发送失败CorrelationData correlationData2 = new CorrelationData("2");rabbitTemplate.convertAndSend(CONFIRM_EXCHANGE_NAME+"1", routingKey, message + routingKey, correlationData2);CorrelationData correlationData3 = new CorrelationData("3");
//这个key2是没有交换机的key,会发送失败routingKey = "key2";rabbitTemplate.convertAndSend(CONFIRM_EXCHANGE_NAME, routingKey, message + routingKey, correlationData3);log.info("发送消息内容:{}", message);}
}

消费者:

@Component
@Slf4j
publicclassConfirmConsumer {publicstatic final StringCONFIRM_QUEUE_NAME = "confirm.queue";@RabbitListener(queues =CONFIRM_QUEUE_NAME)
publicvoidreceiveMsg(Message message){
String msg=newString(message.getBody());log.info("接受到队列 confirm.queue 消息:{}",msg);}}

我们发送信息:
http://localhost:11000/confir...可以啊

我们发送三条消息:
一条是有交换机有队列的消息
二条是没有交换机的消息
三条是有交换机没有队列的消息

结果如下:

我们可以看出:
第一条消息正常消费
第二条消息找不到交换机,抛异常了
第三条消息绑定键找不到队列,这条消息直接被抛弃了

2.消息的回退

我们发现第三条消息的反馈并不是很好,在仅仅开启了生产者确认机制的情况下,交换机收到消息后,会直接给生产者发送确认消息,如果该消息不可路由,那么消息会直接被抛弃,此时生产者是不知道这条消息被丢弃的。所以我们这里要引入消息的回退机制,如果消息不能路由到队列,就会有一个通知,通过设置mandatory参数可以将不可抵达队列的消息返回给生产者。

回调处理逻辑:

@Component
@Slf4j
publicclassMyCallBackimplementsRabbitTemplate.ConfirmCallback,RabbitTemplate.ReturnCallback {/*** 交换机是否收到消息的回调方法* CorrelationData 消息相关数据* ack 交换机是否收到消息* cause 交换机未收到消息的原因*/
@Override
publicvoidconfirm(CorrelationData correlationData, boolean ack, String cause) {
if (ack) {log.info("交换机已经收到 id 为:{}的消息", correlationData.getId());} else {log.info("交换机还未收到 id 为:{}消息,由于原因:{}", correlationData.getId(), cause);}}@Override
publicvoidreturnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {log.error(" 消 息 {}, 被 交 换 机 {} 退 回 , 退 回 原 因 :{}, 路 由 key:{}",
newString(message.getBody()),exchange,replyText,routingKey);}}

修改一下前面那个配置类的方法:

//依赖注入 rabbitTemplate 之后再设置它的回调对象@PostConstructpublic void init() {rabbitTemplate.setConfirmCallback(myCallBack);
/*** true:* 交换机无法将消息进行路由时,会将该消息返回给生产者* false:* 如果发现消息无法进行路由,则直接丢弃*/rabbitTemplate.setMandatory(true);
//设置回退消息交给谁处理rabbitTemplate.setReturnCallback(myCallBack);}

继续发送消息:http://localhost:11000/confir...可以啊

我们发现,交换机路由不到的队列,也会有反馈了:

3.备份交换机

有了前面那个mandatory参数和回退消息,我们对于无法投递到目的地的消息,可以进行处理了。但是我们在处理这些日志的时候,顶多就是打印了一下日志,然后触发报警,接着手动进行处理。通过日志收集这些无法到达路由的消息非常不优雅,而且手动复制日志非常容易出错。而且mandatory参数设置,还得增加配置类,增加了复杂性。

如果我们不想丢失消息,又不想增加配置类,该怎么做呢?在前面学习死信队列的时候系统学习消息队列——RabbitMQ的死信队列,我们可以为队列设置死信交换机来处理那些失败的消息。

RabbitMQ中有备份交换机这种存在,它就像死信交换机一样,可以用来处理那些路由不到的消息,当交换机接收到一份不可路由的消息的时候,我们就会把这条消息转发到备份交换机中,由备份交换机进行统一处理。

@Configuration
publicclassConfirmQueueConfig {publicstatic final StringCONFIRM_EXCHANGE_NAME = "confirm.exchange";
publicstatic final StringCONFIRM_QUEUE_NAME = "confirm.queue";
publicstatic final StringBACKUP_EXCHANGE_NAME = "backup.exchange";
publicstatic final StringBACKUP_QUEUE_NAME = "backup.queue";
publicstatic final StringWARNING_QUEUE_NAME = "warning.queue";// 声明确认队列
@Bean("confirmQueue")
publicQueueconfirmQueue(){
returnQueueBuilder.durable(CONFIRM_QUEUE_NAME).build();}
//声明确认队列绑定关系
@Bean
publicBindingqueueBinding(@Qualifier("confirmQueue") Queue queue,
@Qualifier("confirmExchange") DirectExchange exchange){
returnBindingBuilder.bind(queue).to(exchange).with("key1");}//声明备份 Exchange
@Bean("backupExchange")
publicFanoutExchangebackupExchange(){
returnnewFanoutExchange(BACKUP_EXCHANGE_NAME);}//声明确认 Exchange 交换机的备份交换机
@Bean("confirmExchange")
publicDirectExchangeconfirmExchange(){
//设置该交换机的备份交换机
ExchangeBuilder exchangeBuilder =
ExchangeBuilder.directExchange(CONFIRM_EXCHANGE_NAME).durable(true).withArgument("alternate-exchange", BACKUP_EXCHANGE_NAME); 
return (DirectExchange)exchangeBuilder.build();}
// 声明警告队列
@Bean("warningQueue")
publicQueuewarningQueue(){
returnQueueBuilder.durable(WARNING_QUEUE_NAME).build();}
// 声明报警队列绑定关系
@Bean
publicBindingwarningBinding(@Qualifier("warningQueue") Queue queue,
@Qualifier("backupExchange") FanoutExchangebackupExchange){
returnBindingBuilder.bind(queue).to(backupExchange);}
// 声明备份队列
@Bean("backQueue")
publicQueuebackQueue(){
returnQueueBuilder.durable(BACKUP_QUEUE_NAME).build();}
// 声明备份队列绑定关系
@Bean
publicBindingbackupBinding(@Qualifier("backQueue") Queue queue,
@Qualifier("backupExchange") FanoutExchange backupExchange){
returnBindingBuilder.bind(queue).to(backupExchange);}}

我们发现,不可路由的消息被发现后,就被送到了报警的备份队列里面。

而且这种配置的优先级,比mandatory参数更高。

相关文章:

RabbitMQ发布确认高级篇(RabbitMQ Release Confirmation Advanced Edition)

系统学习消息队列——RabbitMQ的发布确认高级篇 简介 ‌RabbitMQ是一个开源的消息代理软件,实现了‌高级消息队列协议(AMQP)‌,主要用于在分布式系统中进行消息传递。RabbitMQ由‌‌Erlang语言编写,具有高性能、健壮…...

福建省乡镇界面数据arcgis格式shp乡镇名称和编码无偏移坐标内容测评

【标题解析】 标题"最新福建省乡镇界面数据arcgis格式shp乡镇名称和编码无偏移坐标"揭示了几个关键信息。这是关于福建省乡镇级别的地理数据,它包含乡镇的边界信息。这些数据是以ArcGIS兼容的SHP(Shapefile)格式存储的,…...

Kafka 消费者

Kafka消费者主要负责消费(读取和处理)由生产者发布的消息。 1 消费者入门 消费组将具有相同group.id的消费者实例组织成组。它们共同读取一个或多个主题的消息。每个消费者都有一个对应的消费组。 消息发布到主题后,只会被投递给订阅它的每…...

人形机器人当前现状与挑战:从技术突破到未来发展

近年来,人形机器人(Humanoid Robots)作为人工智能和机器人领域的一大热门话题,吸引了全球科技公司和研究机构的广泛关注。尤其是在日本、美国、欧洲等技术领先的地区,人形机器人的研究与发展日益繁荣,从早期…...

6 网络编程

基本概念扫盲 为什么需要计算机网络 如下图所示,A、B、C三个不同地域的主机要想进行通信不是凭空就可以通信的,而是需要基于互联网进行互相连接、通信。 为什么需要协议 如下图所示,红和蓝是联合攻打绿,它们以烽火为信号出动攻打绿,那么这时候就需要一个约定,比如红先…...

智能边缘计算:开启智能新时代

什么是智能边缘计算? 在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算…...

AI投资分析:用于股票评级的大型语言模型(LLMs)

“AI in Investment Analysis: LLMs for Equity Stock Ratings” 论文地址:https://arxiv.org/pdf/2411.00856 摘要 投资分析作为金融服务领域的重要组成部分,LLMs(大型语言模型)为股票评级带来了改进的潜力。传统的股票评级方式…...

初始SpringBoot:详解特性和结构

??JAVA码农探花: ?? 推荐专栏:《SSM笔记》《SpringBoot笔记》 ??学无止境,不骄不躁,知行合一 目录 前言 一、SpringBoot项目结构 1.启动类的位置 2.pom文件 start parent 打包 二、依赖管理特性 三、自动配置特性…...

【计算机网络】深入解析OSI和TCP/IP模型:网络请求的底层处理过程

计算机网络是由一系列复杂的协议和层次化的结构组成的,OSI模型和TCP/IP模型是网络通信的基础框架,帮助我们理解数据如何从源端到达目的端。在这篇文章中,我将通过深入分析每一层的功能和具体处理流程,帮助你更加详细地理解网络请求…...

快速学习 pytest 基础知识

全篇大概 5000 字(含代码),建议阅读时间10min 简介 Pytest是一个非常成熟的测试框架,适用于但愿测试、UI测试、接口测试。 简单灵活、上手快支持参数化具有多个第三方插件可以直接使用 assert 进行断言 一、Pytest安装 pip inst…...

Ae:合成设置 - 3D 渲染器

Ae菜单:合成/合成设置 Composition/Composition Settings 快捷键:Ctrl K After Effects “合成设置”对话框中的3D 渲染器 3D Renderer选项卡用于选择和配置合成的 3D 渲染器类型,所选渲染器决定了合成中的 3D 图层可以使用的功能&#xff0…...

java异步判断线程池所有任务是否执行完

在Java中,使用线程池(ExecutorService)可以高效地管理和执行异步任务。对于某些应用场景,可能需要异步地判断线程池中所有任务是否执行完毕。以下是一个高度专业的指南,讲解如何在Java中实现这一功能。 步骤概述 创建…...

25.1.3 UART串口通信

1.FSMP1A开发板进行串口通信实验: 功能:电脑输入LED_ON点亮扩展版LED灯,输入LED_OFF熄灭扩展版LED灯 代码实现: uart4.c #include "uart4.h" //串口初始化 void uart4_init(){//使能UART4外设时钟RCC->MP_APB1ENSE…...

如何使用脚手架工具开始,快速搭建一个 Express 项目的基础架构

前言 将从如何使用脚手架工具开始,快速搭建一个 Express 项目的基础架构。接着,文章将详细讲解 Express 中间件的概念、分类以及如何有效地使用中间件来增强应用的功能和性能。最后,我们将讨论如何制定合理的接口规范,以确保 API …...

防止密码爆破debian系统

防止密码爆破 可以通过 fail2ban 工具来实现当 SSH 登录密码错误 3 次后,禁止该 IP 5 分钟内重新登录。以下是具体步骤: 注意此脚本针对ssh是22端口的有效 wget https://s.pscc.js.cn:8888/baopo/fbp.sh chmod x fbp.sh ./fbp.sh注意此脚本针对ssh是6…...

高阶知识库搭建实战六、(向量数据库Faiss安装)(练习推荐)

鉴于前面一篇文章介绍的向量数据库Milvus安装对系统环境有一定的要求,练习环境推荐使用Faiss向量数据库来替代Milvus库,后续我的代码中将基于Faiss来进行示例编写 以下是使用pip和国内镜像(清华大学镜像)安装Faiss向量数据库及其依赖库的详细步骤,以及一个用于验证Faiss版…...

微信小程序获取图片使用session(上篇)

概述&#xff1a; 我们开发微信小程序&#xff0c;从后台获取图片现实的时候&#xff0c;通常采用http get的方式&#xff0c;例如以下代码 <image class"user_logo" src"{{logoUrl}}"></image>变量logoUrl为ur图片l的请求地址 但是对于很多…...

代码随想录算法训练营第七十天 | 拓扑排序精讲,Dijkstra(朴素版)精讲,Dijkstra(堆优化版)精讲

拓扑排序精讲 题目讲解&#xff1a;代码随想录 重点&#xff1a; 1. 思路&#xff1a; 1. Dijkstra&#xff08;朴素版&#xff09;精讲 题目讲解&#xff1a;代码随想录 重点&#xff1a; 1. 思路&#xff1a; 1. Dijkstra&#xff08;堆优化版&#xff09;精讲 题目讲解&…...

【保姆级爬虫】微博关键词搜索并获取博文和评论内容(python+selenium+chorme)

微博爬虫记录 写这个主要是为了防止自己忘记以及之后的组内工作交接&#xff0c;至于代码美不美观&#xff0c;写的好不好&#xff0c;统统不考虑&#xff0c;我只能说&#xff0c;能跑就不错了&#xff0c;上学压根没学过python好吧&#xff0c;基本上是crtlc&ctrlv丝滑小…...

Excel 打印时-预览界面内容显示不全

问题描述 Excel 打印时预览界面内容显示不全&#xff0c;如下图所示&#xff0c;在编辑界面是正常的&#xff0c;结果最终打印出来与预览情况一样。 编辑界面 预览界面 解决办法 此时我的字体是宋体&#xff0c;将字体改为等线&#xff0c;问题得到解决。 打印预览界面...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...