当前位置: 首页 > news >正文

第四章.误差反向传播法—ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现

第四章.误差反向传播法

4.2 ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现

1.ReLU层

1).公式

在这里插入图片描述

2).导数:

在这里插入图片描述

3).计算图:

在这里插入图片描述

4).实现:

class ReLU:def __init__(self):self.mask = None# 正向传播def forward(self, x):self.mask = (x <= 0)  # 输入值是否≤0,返回值是由True/False构成的Numpy数组out = x.copy()out[self.mask] = 0  # mask中的元素为True的地方置为0return out# 反向传播def backward(self, dout):dout[self.mask] = 0dx = doutreturn dx

2.Sigmoid层

1).公式:

在这里插入图片描述

2).计算图:

在这里插入图片描述

  • 简洁版
    在这里插入图片描述

3).导数:

在这里插入图片描述

4).实现:

import numpy as npclass Sigmoid:def __init__(self):self.out = None# 正向传播def forward(self, x):out = 1 / (1 + np.exp(-x))self.out = outreturn out# 反向传播def backward(self, dout):dx = dout * (1.0 - self.out) * self.outreturn dx

3.Affine层

  • 神经网络的正向传播中进行的矩阵乘积运算在几何学领域被称为“仿射变化”,因此,将进行仿射变化的处理实现为Affine层
  • 几何中,仿射变换包括一次线性变换和一次平移,分别对应神经网络的加权和运算和加偏置运算。

1).计算图:

  • 单个数据的Affine层:
    在这里插入图片描述

  • 批版本的Affine层:
    在这里插入图片描述

2).实现:

·未考虑输入张量的情况:

import numpy as npclass Affine:def __init__(self, W, b):self.W = Wself.b = bself.x = Noneself.dw = Noneself.db = None# 正向传播def forward(self, x):self.x = xout = np.dot(self.x, self.W) + self.breturn out# 反向传播def backward(self, dout):dx = np.dot(dout, self.W.T)self.dw = np.dot(self.x.T, dout)self.db = np.sum(dout, axis=0)return dx

·考虑输入张量的情况 (张量就是多维数据)

import numpy as npclass Affine:def __init__(self, W, b):self.W = Wself.b = bself.x = Noneself.original_x_shape = None# 权重和偏置参数的导数self.dW = Noneself.db = Nonedef forward(self, x):# 对应张量self.original_x_shape = x.shape  # 例如:x.shape=(209, 64, 64, 3)x = x.reshape(x.shape[0], -1)  # x=(209, 64*64*3)self.x = xout = np.dot(self.x, self.W) + self.breturn outdef backward(self, dout):dx = np.dot(dout, self.W.T)self.dW = np.dot(self.x.T, dout)self.db = np.sum(dout, axis=0)dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)return dx

4.Softmax-with-Loss层

  • 神经网络中进行的处理有推理学习两个阶段,推理阶段通常不适用softmax层,学习阶段需要使用softmax层。

1).计算图:

在这里插入图片描述

2).实现:

import numpy as npclass SoftmaxWithLoss:def __init__(self):self.loss = None  # 损失self.y = None  # softmax的输出self.t = None  # 监督数据(one_hot vector)# 输出层函数:softmaxdef softmax(x):if x.ndim == 2:x = x.Tx = x - np.max(x, axis=0)y = np.exp(x) / np.sum(np.exp(x), axis=0)return y.Tx = x - np.max(x)  # 溢出对策return np.exp(x) / np.sum(np.exp(x))# 交叉熵误差def cross_entropy_error(y, t):if y.ndim == 1:t = t.reshape(1, t.size)y = y.reshape(1, y.size)# 监督数据是one-hot-vector的情况下,转换为正确解标签的索引if t.size == y.size:t = t.argmax(axis=1)batch_size = y.shape[0]return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size# 正向传播def forward(self, x, t):self.t = tself.y = self.softmax(x)self.loss = self.cross_entropy_error(self.y, self.t)return self.loss# 反向传播def backward(self, dout=1):batch_size = self.t.shape[0]if self.t.size == self.y.size:  # 监督数据是one-hot-vector的情况dx = (self.y - self.t) / batch_sizeelse:dx = self.y.copy()dx[np.arange(batch_size), self.t] -= 1dx = dx / batch_sizereturn dx

相关文章:

第四章.误差反向传播法—ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现

第四章.误差反向传播法 4.2 ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现 1.ReLU层 1).公式 2).导数&#xff1a; 3).计算图&#xff1a; 4).实现&#xff1a; class ReLU:def __init__(self):self.mask None# 正向传播def forward(self, x):self.mask (x < 0) # 输入…...

Python-第二天 Python基础语法

Python-第二天 Python基础语法一、 字面量1.1 常用的值类型1.1.1 字符串&#xff08;string&#xff09;二、注释2.1 注释的作用2.2 注释的分类三、变量3.1 什么是变量3.2 变量的特征四、数据类型4.1 数据类型4.2 type()语句4.3 type()语句的使用方式4.4 变量有类型吗&#xff…...

命令模式包含哪些主要角色?怎样实现命令?

命令模式包含以下主要角色&#xff1a;抽象命令类&#xff08;Command&#xff09;角色&#xff1a; 定义命令的接口&#xff0c;声明执行的方法。具体命令&#xff08;Concrete Command&#xff09;角色&#xff1a;具体的命令&#xff0c;实现命令接口&#xff1b;通常会持有…...

SpringCloud-Feign

Spring Cloud中集成Feign (只是笔记而已 其中有点命名啥的不对应&#xff0c;搜到了就划走吧) Feign--[feɪn]&#xff1a;Web 服务客户端&#xff0c;能够简化 HTTP 接口的调用。 没有Feign的之前服务提供者 package com.springcloudprovide.controller;import com.springclo…...

XCP实战系列介绍08-基于Vehicle Spy进行XCP测量的工程配置详解

本文框架 1.概述2. 工程配置步骤2.1 创建MEP工程2.1.1 添加A2L文件2.1.2 CAN收发ID配置2.2 MEP属性设置2.2.1 ECU属性设置2.2.2 MEP的Security设置2.3 DAQ设置2.3.1创建DAQ2.3.2 list中测量及标定量的添加和设置2.3.3 设置DAQ list中变量的event1.概述 在前面一篇文章《看了就…...

JVM调优几款好用的内存分析工具

对于高并发访问量的电商、物联网、金融、社交等系统来说&#xff0c;JVM内存优化是非常有必要的&#xff0c;可以提高系统的吞吐量和性能。通常调优的首选方式是减少FGC次数或者FGC时间&#xff0c;以避免系统过多地暂停。FGC达到理想值后&#xff0c;比如一天或者两天触发一次…...

Vue中路由缓存及activated与deactivated的详解

目录前言一&#xff0c;路由缓存1.1 引子1.2 路由缓存的方法1.2.1 keep-alive1.2.2 keep-alive标签中的include属性1.2.3 include中多组件的配置二&#xff0c;activated与deactivated2.1 引子2.2 介绍activated与deactivated2.3 解决需求三&#xff0c;整体代码总结前言 在Vu…...

【漏洞复现】phpStudy 小皮 Windows面板 RCE漏洞

文章目录前言一、漏洞描述二、漏洞复现前言 本篇文章仅用于漏洞复现研究和学习&#xff0c;切勿从事非法攻击行为&#xff0c;切记&#xff01; 一、漏洞描述 Phpstudy小皮面板存在RCE漏洞&#xff0c;通过分析和复现方式发现其实本质上是一个存储型XSS漏洞导致的RCE。通过系…...

跨域小样本系列2:常用数据集与任务设定详解

来源&#xff1a;投稿 作者&#xff1a;橡皮 编辑&#xff1a;学姐 带你学习跨域小样本系列1-简介篇 跨域小样本系列2-常用数据集与任务设定详解&#xff08;本篇&#xff09; 跨域小样本系列3&#xff1a;元学习方法解决CDFSL以及两篇SOTA论文讲解 跨域小样本系列4&#xf…...

HTML浪漫动态表白代码+音乐(附源码)

HTML浪漫表白求爱(附源码)&#xff0c;内含4款浪漫的表白源码&#xff0c;可用于520&#xff0c;情人节&#xff0c;生日&#xff0c;求爱场景&#xff0c;下载直接使用。 直接上源码吧 一.红色爱心 1.效果 实际效果是动态的哦 2.源码 复制粘贴即可运行哦 <!DOCTYPE…...

The last packet sent successfully to the server was 0 milliseconds ago. 解决办法

mybatis-generator-maven-plugin插件The last packet sent successfully to the server was 0 milliseconds agoYou must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to…...

分布式高级篇1 —— 全文检索

Elasticsearch Elasticsearch简介一、基本概念1、index(索引)2、Type(类型)3、Document(文档)4、倒排索引二、Docker 安装 EL1、拉取镜像2、创建实例三、初步探索1、_cat2、索引一个文档(保存)3、查询文档3、更新文档4、删除文档&索引5、_bulk 批量 AP6、样本测试数据四、进…...

集成电路开发及应用-模拟数字部分专栏目录

三角波发生器电路图分析_XMJYBY的博客-CSDN博客运算放大器正反馈负反馈判别法_如何理解运算放大器的反馈机制,分哪几种_XMJYBY的博客-CSDN博客运算放大器实现多路同向反向加减运算电路公式推导(一)_反向减法运算电路_XMJYBY的博客-CSDN博客运算放大器实现多路同向反向加减运算电…...

ios使用SARUnArchiveANY 解压rar文件(oc和swift版本)

SARUnArchiveANY简介 开源库网址&#xff1a; https://github.com/saru2020/SARUnArchiveANY 简介&#xff1a; 一个iOS的非常有用的库来解压zip&#xff0c;.rar&#xff0c;7z文件。 他是以下库的简单集成&#xff1a; UnrarKitSSZipArchiveLzmaSDKObjC (7z) 需要注意的是…...

【Python学习笔记】21.Python3 函数(2)

前言 本章介绍调用函数时可使用的正式参数。 参数 以下是调用函数时可使用的正式参数类型&#xff1a; 必需参数关键字参数默认参数不定长参数 必需参数 必需参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。 调用 printme() 函数&#xff0c;你必须传入一…...

day57回文子串_最长回文子序列

力扣647.回文子串 题目链接&#xff1a;https://leetcode.cn/problems/palindromic-substrings/ 思路 dp数组含义 dp[i][j]:以s[i]为开头&#xff0c;s[j]为结尾的子串是否是回文子串 递推公式 子串范围为[i,j]&#xff0c;当s[i]s[j]时&#xff0c;有三种情况&#xff1…...

Element UI框架学习篇(二)

Element UI框架学习篇(二) 1 整体布局 1.1 前提说明 el-container标签里面的标签默认是从左往右排列,若想要从上往下排列,只需要写el-header或者el-footer就行了 <el-container>&#xff1a;外层容器 <el-header>&#xff1a;顶栏容器。 <el-aside>&#…...

【C++】类与对象(上)

文章目录一、面向过程和面向对象初步认识二、类的引入三、类的定义四、类的访问限定符及封装①访问限定符②封装五、类的作用域六、类的实例化七、类对象模型①如何计算类对象大小②类对象的存储方式③结构体中内存对齐规则八、this指针①this指针的引出②this指针的特性一、面…...

Leetcode.1797 设计一个验证系统

题目链接 Leetcode.1797 设计一个验证系统 Rating : 1534 题目描述 你需要设计一个包含验证码的验证系统。每一次验证中&#xff0c;用户会收到一个新的验证码&#xff0c;这个验证码在 currentTime时刻之后 timeToLive秒过期。如果验证码被更新了&#xff0c;那么它会在 curr…...

Kaldi - 数据文件准备

文章目录数据文件准备wav.scputt2spkspk2utttext相关代码根据文件生成 utt2spk 和 wav.scputt2spk -- spk2utt 转换数据文件准备 在训练/解码中&#xff1a; 有三个文件是必要的&#xff1a; wav.scp 语音编号 – 路径信息utt2spk 语音编号 – 说话人编号spk2utt 说话人编号 …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...