当前位置: 首页 > news >正文

使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用

使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用

目录

  • 使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用
    • 1. 引言
    • 2. 数据集介绍
    • 3. 模型网络结构
      • 3.1 网络结构
      • 3.2 编码器
      • 3.3 生成器
      • 3.4 判别器
    • 4. 模型优化器与损失函数
      • 4.1 优化器
      • 4.2 损失函数
    • 5. 模型实现细节
      • 5.1 防止过拟合
      • 5.2 防止梯度爆炸
      • 5.3 模型收敛性
    • 6. 模型训练与评估
      • 6.1 数据加载
      • 6.2 模型训练
      • 6.3 模型评估
    • 7. 完整代码实现
    • 8. 结果分析
    • 9. 结论
    • 10. 参考文献

1. 引言

在本篇博客中,我们将使用PyTorch实现一个基于卷积神经网络(CNN)和反卷积神经网络(Deconvolutional Neural Network)的图像生成模型。该模型由编码器、生成器和判别器三部分组成,旨在生成高质量的图像。我们将使用CIFAR-10数据集进行训练和评估,并通过绘制损失图和正确率图来监控模型的训练过程。

2. 数据集介绍

CIFAR-10数据集是一个广泛使用的图像分类数据集,包含10个类别的60000张32x32彩色图像,每个类别有6000张图像。数据集分为50000张训练图像和10000张测试图像。我们将使用这个数据集来训练我们的生成模型。

3. 模型网络结构

3.1 网络结构

模型概述:

针对少样本学习任务中数据量不足导致的模型泛化能力差的问题,我们提出一种基于元学习与对比学习的少样本分类模型。该模型利用元学习框架学习如何快速适应新任务,并结合对比学习提升模型的特征表示能力,从而在少量样本的情况下实现较好的分类性能。

相关文章:

使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用

使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用 目录 使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用1. 引言2. 数据集介绍3. 模型网络结构3.1 网络结构3.2 编码器3.3 生成器3.4 判别器4. 模型优化器与损失函数4.1 优…...

用matlab调用realterm一次性发送16进制数

realterm采用PutString接口进行发送,需要注意的是发送的16进制数前面要加入0x标志。只有这样,realterm才能将输入的字符串识别为16进制数的形式。 另外,PutString函数支持两个参数输入,第一个参数为字符串,第二个参数为发送形式&…...

通过可穿戴外骨骼,以更灵活的方式操作你的机器人。

今天,我们将介绍一款专为控制 Mercury X1 和 Mercury B1 机械臂而设计的创新外骨骼。这种外骨骼以人类手臂的结构为蓝本,可实现直观和精确的控制。 开发这种外骨骼的动机源于人们对深度学习和机器学习等领域日益增长的兴趣。这些技术使机器人能够自主学习…...

记录将springboot的jar包和lib分离,使用docker-compose部署

本文讲诉如何把jar里的lib依赖包独立出来,方便更新服务时,缩小jar的体积,下面以若依的system服务为例,配置中的路径请酌情修改,主要提供大致配置逻辑 第一步:修改项目的pom.xml,调整build的配…...

JavaScript 延迟加载的方法

延迟加载(Lazy Loading)是一种优化网页性能的技术,它允许资源(如图片、脚本等)在需要时才被加载,而不是在页面初次加载时全部加载。这可以减少初始页面加载时间,提升用户体验,特别是…...

xrdp连接闪退情况之一

错误核查 首先使用命令vim ~/.xsession-errors,当里面的报错信息为WARNING **: Could not make bus activated clients aware of XDG_CURRENT_DESKTOPGNOME environment variable:Failed to execute child process “dbus-launch” (No such file or directory)&am…...

数据分析思维(八):分析方法——RFM分析方法

数据分析并非只是简单的数据分析工具三板斧——Excel、SQL、Python,更重要的是数据分析思维。没有数据分析思维和业务知识,就算拿到一堆数据,也不知道如何下手。 推荐书本《数据分析思维——分析方法和业务知识》,本文内容就是提取…...

WebRTC 在视频联网平台中的应用:开启实时通信新篇章

在当今这个以数字化为显著特征的时代浪潮之下,实时通信已然稳稳扎根于人们生活与工作的方方面面,成为了其中不可或缺的关键一环。回首日常生活,远程办公场景中的视频会议让分散各地的团队成员能够跨越地理距离的鸿沟,齐聚一堂共商…...

Vue3(elementPlus) el-table替换/隐藏行箭头,点击整行展开

element文档链接: https://element-plus.org/zh-CN/component/form.html 一、el-table表格行展开关闭箭头替换成加减号 注:Vue3在样式中修改箭头图标无效,可能我设置不对,欢迎各位来交流指导 转变思路:隐藏箭头&…...

oracle闪回恢复数据:(闪回查询,闪回表,闪回库,回收站恢复)

oracle的闪回查询,可以查询提交在表空间的闪回数据,并可以还原所查询的数据,用于恢复短时间内的delele 或者 update 误操作,非常方便,缺点是只能恢复大概几小时内的数据。 文章目录 概要闪回查询恢复数据的主要方法包括…...

C语言——结构体,位段,枚举和联合

目录 前言 结构体 1含义 2语法 3匿名结构体 4结构体自引用 5结构体的定义与初始化 6内存对齐 7修改对齐数 8结构体传参 位段 1含义 2位段的内存分配 ​编辑3位段的问题 4位段的应用 枚举 1含义 2定义 3枚举优点 4枚举使用 联合 1含义 2定义 3特点 4计…...

期末概率论总结提纲(仅适用于本校,看文中说明)

文章目录 说明A选择题1.硬币2.两个事件的关系 与或非3.概率和为14.概率密度 均匀分布5.联合分布率求未知参数6.联合分布率求未知参数7.什么是统计量(记忆即可)8.矩估计量9.117页12题10.显著水平阿尔法(背公式就完了) 判断题11.事件…...

Python视频处理:噪声矩阵与并行计算的完美融合

噪声级别对视频质量有显著的影响,主要体现在以下几个方面: 1. 视觉质量 低噪声级别:当噪声级别较低时,视频的视觉质量较好。噪声对图像细节的干扰较小,画面看起来较为清晰和自然。观众可以更容易地识别图像中的细节和…...

如何使用SparkSql

一、SparkSql的前世今生 Hive->Shark->Spark SQL 二、SparkSql依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.1.2</version> </dependency> 三、…...

YOLOv8实战人员跌倒检测

本文采用YOLOv8作为核心算法框架&#xff0c;结合PyQt5构建用户界面&#xff0c;使用Python3进行开发。YOLOv8以其高效的实时检测能力&#xff0c;在多个目标检测任务中展现出卓越性能。本研究针对人员跌倒目标数据集进行训练和优化&#xff0c;该数据集包含丰富人员跌倒图像样…...

QT-TCP-server

为了实现高性能的TCP通讯&#xff0c;以下是一个基于Qt的示例&#xff0c;展示如何利用多个线程、非阻塞I/O、数据分块和自定义协议进行优化。该示例以TCP服务器和客户端的形式展示&#xff0c;能够承受高负载并实现快速数据传输。 高性能TCP Server示例 #include <QTcpSe…...

【STM32+QT项目】基于STM32与QT的智慧粮仓环境监测与管理系统设计(完整工程资料源码)

视频演示: 基于STM32与QT的智慧粮仓环境监测与管理系统设计 目录: 目录 视频演示: 目录: 前言:...

robot 仿真环境安装测试 [持续更新]

将持续更新各种robot simulation环境的安装过程. RLBench 安装CoppeliaSim、PyRep、RLBench git: https://github.com/stepjam/RLBench/tree/master (1)CoppeliaSim sudo gedit ~/.bashrc设置环境变量 export COPPELIASIM_ROOT=${HOME}/CoppeliaSim export LD_LIBRARY_…...

【FlutterDart】 拖动边界线改变列宽类似 vscode 那种拖动改变编辑框窗口大小(11 /100)

【Flutter&Dart】 拖动改变 widget 的窗口尺寸大小GestureDetector&#xff5e;简单实现&#xff08;10 /100&#xff09; 【Flutter&Dart】 拖动边界线改变列宽并且有边界高亮和鼠标效果&#xff08;12 /100&#xff09; 上效果&#xff1a; 这个在知乎里找到的效果&…...

R语言的循环实现

以R语言的循环实现 引言 R语言作为一种强大的统计分析和数据可视化工具&#xff0c;广泛应用于数据科学、统计学和机器学习等领域。在R语言中&#xff0c;循环是一个基本的控制结构&#xff0c;用于重复执行一段代码。循环不仅可以提高代码的可读性&#xff0c;还可以方便地处…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...