当前位置: 首页 > news >正文

《机器学习》——贝叶斯算法

贝叶斯简介

  • 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
  • 利用贝叶斯公式可以定量地描述由果推因的可靠程度,在经济、医药、人工智能等领域中广泛应用。
  • 贝叶斯公式可以拓展为随机变量形式,在贝叶斯统计的观点下,如果已知样本的观察值,便可以使用参数的后验分布来进行参数估计。
    在这里插入图片描述

贝叶斯分类器

在这里插入图片描述

  • 参数:
    • alpha:
      • 类型:浮点数,默认为 1.0
      • 在这里插入图片描述
    • fit_prior:
      • 类型:布尔值,默认为 True。
      • 在这里插入图片描述
    • binarize(二值化):
      • 浮点数或 None,默认值=0.0
      • 样本特征二值化(映射到布尔值)的阈值。如果为 None,则假定输入已由二进制向量组成。
    • class_prior:
      • 数组,形状为 (n_classes,),默认值为 None
      • 类别的先验概率。如果指定,则先验不会根据数据进行调整。

贝叶斯实例

我们通过贝叶斯的算法实例,通过算法来实现项目。
本项目目标是对数据进行分类,共一百条数据,且第一列为数据编号不参与项目,最后一列为数据的分类标签有0和1类别。
在这里插入图片描述

项目过程

  • 导入数据
  • 处理数据
  • 划分数据
  • 通过贝叶斯分类器训练模型
  • 自测并用测试集测试
  • 产生分类报告和绘制混淆矩阵

导入数据

数据:通过网盘分享的文件:iris.csv
链接: https://pan.baidu.com/s/1ssc_VSVSUbkzz2-SOipV9w 提取码: jq54

# 导入数据
data = pd.read_csv('iris.csv',header=None)

处理数据

# 删除第一列
data = data.drop(0,axis=1)
x_whole = data.drop(5,axis=1) # 删除第5列其余为原始特征数据
y_whole = data[5] # 第5列为原始标签

划分数据

# 划分训练集和测试集,从原始数据中划分20%为测试集,80%为训练集。
from sklearn.model_selection import train_test_split
x_train_w,x_test_w,y_train_w,y_test_w=\train_test_split(x_whole,y_whole,test_size=0.2,random_state=0)

通过贝叶斯分类器训练模型

# 导入贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
# 训练模型
classifier.fit(x_train_w,y_train_w)

自测并用测试集测试

# 使用训练集自测
from sklearn import metrics
train_pred = classifier.predict(x_train_w)
# 使用测试集进行测试
test_pred = classifier.predict(x_test_w)

产生分类报告和绘制混淆矩阵

# 分别对训练集和测试集的结果产生分类报告和混淆矩阵
print(metrics.classification_report(y_train_w,train_pred))
cm_plot(y_train_w,train_pred).show()
print(metrics.classification_report(y_test_w,test_pred))
cm_plot(y_test_w,test_pred).show()

在这里插入图片描述
在这里插入图片描述

可以通过分类报告和混淆矩阵可以看出,没有产生过拟合和欠拟合等,准确率和召回率都很高。

相关文章:

《机器学习》——贝叶斯算法

贝叶斯简介 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多,则该属性成…...

【博主推荐】 Microi吾码开源低代码平台,快速建站,提高开发效率

🍬引言 🍬什么是低代码平台? 低代码平台(Low-Code Platform)是一种使开发人员和业务用户可以通过图形化界面和少量的编程来创建应用程序的开发工具。与传统的编程方式相比,低代码平台大大简化了开发过程&a…...

网站自动签到

我研究生生涯面临两个问题,一是写毕业论文,二是找工作,这两者又有很大的冲突。怎么解决这两个冲突呢?把python学好是一个路子,因此从今天我要开一个专栏就是学python 其实我的本意不是网站签到,我喜欢在起点…...

C 语言奇幻之旅 - 第16篇:C 语言项目实战

目录 引言1. 项目规划1.1 需求分析与设计1.1.1 项目目标1.1.2 功能需求1.1.3 技术实现方案 2. 代码实现2.1 模块化编程2.1.1 学生信息模块2.1.2 成绩管理模块 2.2 调试与测试2.2.1 调试2.2.2 测试2.2.4 测试结果 3. 项目总结3.1 代码优化与重构3.1.1 代码优化3.1.2 代码重构 3.…...

项目实战——使用python脚本完成指定OTA或者其他功能的自动化断电上电测试

前言 在嵌入式设备的OTA场景测试和其他断电上电测试过程中,有的场景发生在夜晚或者随时可能发生,这个时候不可能24h人工盯着,需要自动化抓取串口日志处罚断电上电操作。 下面的python脚本可以实现自动抓取串口指定关键词,然后触发…...

04、Redis深入数据结构

一、简单动态字符串SDS 无论是Redis中的key还是value,其基础数据类型都是字符串。如,Hash型value的field与value的类型,List型,Set型,ZSet型value的元素的类型等都是字符串。redis没有使用传统C中的字符串而是自定义了…...

【MySQL学习笔记】MySQL的索引

MySQL索引 1、索引概述2、 索引的数据结构2.1 BTree索引结构2.2 Hash索引结构2.3 InnoDB选择BTree的原因 3、索引分类4、索引的语法5、SQL性能分析5.1 SQL执行频率5.2 慢查询日志5.3 profile详情5.4 explain执行计划 6、索引使用规则6.1 最左前缀法则6.2 范围查询6.3索引失效情…...

利用ArcGIS快速准确地统计出地块的现状容积率

研究目的 根据建筑.dwg、建筑.dwg Annotation、建筑.dwg Polygon,地籍边界.shp等数据,利用GIS快速准确地统计出地块的现状容积率。 研究思路 加载数据图层:建筑.dwg Polygon、建筑.dwg Annotation,使用空间连接功能把建筑层数数…...

C++类的引入

C中类的前身 1> 面向对象三大特征:封装、继承、多态 2> 封装:将能够实现某一事物的所有万事万物都封装到一起,包括成员属性(成员变量),行为(功能函数)都封装在一起&#xff…...

【跨域问题】

跨域问题 官方概念: 当一个请求url的协议、域名、端口三者之间任意一个与当前页面url不同即为跨域本质来说,是前端请求给到后端时候,请求头里面,有一个 Origin ,会带上 协议域名端口号等;后端接受到请求&…...

“深入浅出”系列之FFmpeg:(1)音视频开发基础

我的音视频开发大部分内容是跟着雷霄骅大佬学习的,所以笔记也是跟雷老师的博客写的。 一、音视频相关的基础知识 首先播放一个视频文件的流程如下所示: FFmpeg的作用就是将H.264格式的数据转换成YUV格式的数据,然后SDL将YUV显示到电脑屏幕上…...

Springboot3.4整合jsp

文章目录 环境 springboot3.4 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency> <!--用于编译jsp--> <!-- Tomcat Embed Jasper --> <dependency>…...

CSS:背景样式、盒子模型与文本样式

背景样式 背景样式用于设置网页元素的背景&#xff0c;包括颜色、图片等。 背景颜色 使用 background-color 属性设置背景颜色&#xff0c;支持多种格式&#xff08;颜色英文、十六进制、RGB等&#xff09;。 div {background-color: lightblue; }格式示例十六进制#ff5733R…...

算法:线性查找

线性查找算法是一种简单的查找算法,用于在一个数组或列表中查找一个特定的元素。它从数组的第一个元素开始,逐个检查每个元素,直到找到所需的元素或搜索完整个数组。线性查找的时间复杂度为O(n),其中n是数组中的元素数量。 实现原理 从列表的第一个元素开始,逐个检查每个…...

【计算机网络】什么是网关(Gateway)?

网上冲浪多了&#xff0c;你可以听到过网关&#xff08;Gateway&#xff09;这个词&#xff0c;但是却不太清楚网关&#xff08;Gateway&#xff09;到底是干什么的、负责网络当中的什么任务&#xff0c;本篇文字将会为你介绍网关&#xff08;Gateway&#xff09;的作用&#x…...

20250106面试

rabbitmq如何保证消息不丢失 my&#xff1a; 持久化&#xff0c;包括消息持久化和队列持久化&#xff0c;重启不丢失。持久化到磁盘中的。 消息确认 死信队列&#xff1a;消费失败&#xff08;业务异常/未确认&#xff0c;重试后&#xff0c;会放死信队列&#xff09;&…...

Java 分布式锁:Redisson、Zookeeper、Spring 提供的 Redis 分布式锁封装详解

&#x1f4da; Java 分布式锁&#xff1a;Redisson、Zookeeper、Spring 提供的 Redis 分布式锁封装详解 在分布式系统中&#xff0c;分布式锁 用于解决多个服务实例同时访问共享资源时的 数据一致性 问题。Java 生态中&#xff0c;有多种成熟的框架可以实现分布式锁&#xff0…...

智能汽车的数字钥匙安全

数字钥匙作为汽车智能化变革下的一项创新技术&#xff0c;利用蓝牙定位、NFC等近场通信技术进行钥匙与汽车的匹配继而开锁&#xff0c;可以让车主通过智能手机、可穿戴设备等解锁汽车&#xff0c;并对汽车实施相关的操作&#xff0c;提升用车便利性&#xff0c;受到越来越多车企…...

YangQG 面试题汇总

一、交叉链表 问题&#xff1a; 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 解题思想&#xff1a; 双指针 备注&#xff1a;不是快慢指针&#xff0c;如果两个长度相…...

急速了解什么是GPU服务器

GPU服务器是一种专门配置了高性能图形处理器&#xff08;GPU&#xff09;的服务器&#xff0c;旨在提供高性能计算、深度学习、科学计算等多种场景的计算服务。与传统的CPU服务器相比&#xff0c;GPU服务器在处理并行密集型计算任务时具有显著优势。本文将详细介绍GPU服务器的定…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...