当前位置: 首页 > news >正文

python【数据结构】

1. 列表

Python 中列表是可变的,这是它区别于字符串元组的最重要的特点;即,列表可以修改,而字符串和元组不能。

以下是 Python 中列表的方法:

方法描述
list.append(x)把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。
list.extend(L)通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。
list.insert(i, x)在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。
list.remove(x)删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。
list.pop([i])从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。)
list.clear()移除列表中的所有项,等于del a[:]。
list.index(x)返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。
list.count(x)返回 x 在列表中出现的次数。
list.sort()对列表中的元素进行排序。
list.reverse()倒排列表中的元素。
list.copy()返回列表的浅复制,等于a[:]。

示例:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。

1.1 将列表当做栈使用

栈是后进先出(LIFO)数据结构,列表提供了一些如 append() 和 pop() 方法,使其非常适合用于栈操作。用 append() 方法可以把一个元素添加到栈顶,用不指定索引的 pop() 方法可以把一个元素从栈顶释放出来。

栈操作

  • 压入(Push):将一个元素添加到栈的顶端。
  • 弹出(Pop):移除并返回栈顶元素。
  • 查看栈顶元素(Peek/Top):返回栈顶元素而不移除它。
  • 检查是否为空(IsEmpty):检查栈是否为空。
  • 获取栈的大小(Size):获取栈中元素的数量。

示例:

# 定义一个栈类
class Stack:# 初始化方法,创建一个空列表作为栈的底层数据结构def __init__(self):self.stack = []# 入栈方法,将元素添加到栈的顶部def push(self, item):self.stack.append(item)# 出栈方法,移除并返回栈顶元素def pop(self):# 如果栈不为空,则弹出栈顶元素并返回if not self.is_empty():return self.stack.pop()# 如果栈为空,则抛出索引错误else:raise IndexError("pop from empty stack")# 查看栈顶元素,但不移除它def peek(self):# 如果栈不为空,则返回栈顶元素if not self.is_empty():return self.stack[-1]# 如果栈为空,则抛出索引错误else:raise IndexError("peek from empty stack")# 判断栈是否为空def is_empty(self):# 如果栈的长度为0,则返回True,表示栈为空return len(self.stack) == 0# 获取栈的大小def size(self):# 返回栈的长度,即栈中元素的数量return len(self.stack)# 使用示例
# 创建一个栈对象
stack = Stack()
# 将元素1、2、3依次入栈
stack.push(1)
stack.push(2)
stack.push(3)# 输出操作信息
print("栈顶元素:", stack.peek())  # 输出: 栈顶元素: 3
print("栈大小:", stack.size())    # 输出: 栈大小: 3
print("弹出元素:", stack.pop())  # 输出: 弹出元素: 3
print("栈是否为空:", stack.is_empty())  # 输出: 栈是否为空: False
print("栈大小:", stack.size())    # 输出: 栈大小: 2

1.2 将列表当作队列使用

队列是一种先进先出(FIFO)的数据结构,但由于列表的特点,直接使用列表来实现队列时,如果频繁地在列表的开头插入或删除元素,性能会受到影响(时间复杂度是 O(n)),因此并不是最优的选择。为了解决这个问题,Python 提供了双端队列 collections.deque,它提供了 O(1) 时间复杂度的添加和删除操作,可以在两端高效地添加和删除元素。

使用列表实现队列:

# 定义一个队列类
class Queue:# 初始化方法,创建一个空列表作为队列的底层数据结构def __init__(self):self.queue = []# 入队方法,将元素添加到队列的尾部def enqueue(self, item):self.queue.append(item)# 出队方法,移除并返回队列的首部元素def dequeue(self):# 如果队列不为空,则移除并返回队首元素if not self.is_empty():return self.queue.pop(0)# 如果队列为空,则抛出索引错误else:raise IndexError("dequeue from empty queue")# 查看队首元素,但不移除它def peek(self):# 如果队列不为空,则返回队首元素if not self.is_empty():return self.queue[0]# 如果队列为空,则抛出索引错误else:raise IndexError("peek from empty queue")# 判断队列是否为空def is_empty(self):# 如果队列的长度为0,则返回True,表示队列为空return len(self.queue) == 0# 获取队列的大小def size(self):# 返回队列的长度,即队列中元素的数量return len(self.queue)# 使用示例
# 创建一个队列对象
queue = Queue()
# 将元素'a'、'b'、'c'依次入队
queue.enqueue('a')
queue.enqueue('b')
queue.enqueue('c')print("队首元素:", queue.peek())   # 输出: 队首元素: a
print("队列大小:", queue.size())   # 输出: 队列大小: 3
print("移除的元素:", queue.dequeue())   # 输出: 移除的元素: a
print("队列是否为空:", queue.is_empty())   # 输出: 队列是否为空: False
print("队列大小:", queue.size())   # 输出: 队列大小: 2

使用 collections.deque 实现队列:

# 导入collections模块中的deque类,deque是一种双端队列
from collections import deque# 创建一个空队列
queue = deque()# 向队尾添加元素'a'、'b'、'c'
queue.append('a')
queue.append('b')
queue.append('c')print("队列状态:", queue)  # 输出: 队列状态: deque(['a', 'b', 'c'])# 从队首移除元素,并将其赋值给变量first_element
first_element = queue.popleft()
print("移除的元素:", first_element)  # 输出: 移除的元素: a
print("队列状态:", queue)  # 输出: 队列状态: deque(['b', 'c'])# 查看队首元素(不移除),直接通过索引0访问队首元素
front_element = queue[0]
print("队首元素:", front_element)   # 输出: 队首元素: b# 检查队列是否为空,通过判断队列的长度是否为0来实现
is_empty = len(queue) == 0
print("队列是否为空:", is_empty)   # 输出: 队列是否为空: False# 获取队列的大小,即队列中元素的数量
size = len(queue)
print("队列大小:", size)   # 输出: 队列大小: 2

1.3 列表推导式

列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。

每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [[x, x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

嵌套列表:

>>> [str(round(355/113, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
>>> matrix = [
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12],
... ]
>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

1.4 del 语句

使用 del 语句可以从一个列表中根据索引来删除一个元素,而不是值来删除元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]


2. 元组

元组由若干逗号分隔的值组成,在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))


3. 集合

集合是一个无序不重复元素的集。基本功能包括关系测试消除重复元素。可以用大括号 {} 创建集合。如果要创建一个空集合必须用 set() 而不是 {} ;后者创建一个空的字典。

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket)                      # 删除重复的
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket                 # 检测成员
True
>>> 'crabgrass' in basket
False>>> # 以下演示了两个集合的操作
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a                                  # a 中唯一的字母
{'a', 'r', 'b', 'c', 'd'}
>>> a - b                              # 在 a 中的字母,但不在 b 中
{'r', 'd', 'b'}
>>> a | b                              # 在 a 或 b 中的字母
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b                              # 在 a 和 b 中都有的字母
{'a', 'c'}
>>> a ^ b                              # 在 a 或 b 中的字母,但不同时在 a 和 b 中
{'r', 'd', 'b', 'm', 'z', 'l'}

集合也支持推导式:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}


4. 字典

序列是以连续的整数为索引,而字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。可以把字典看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同一对大括号表示创建一个空的字典:{}。

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

字典推导可以用来创建任意键和值的表达式词典:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

相关文章:

python【数据结构】

1. 列表 Python 中列表是可变的,这是它区别于字符串和元组的最重要的特点;即,列表可以修改,而字符串和元组不能。 以下是 Python 中列表的方法: 方法描述list.append(x)把一个元素添加到列表的结尾,相当…...

详解Sonar与Jenkins 的集成使用!

本文阅读前提 本文假设读者熟悉Jenkins和SonarQube的基础操作。 核心实现功能 Jenkins中运行的job来调用SonarScanner,最后可实现测试结果与SonarQube中同步查看。 Jenkins中安装Sonar相关插件 配置Sonarqube Dashboard>Manage Jenkins>Systems 指定son…...

《笔记》青蛙跳台阶——斐波那契数列

斐波那契数列 斐波那契数列(Fibonacci Sequence)是一个经典的数学数列,其特点是每一项都是前两项的和。数列的前两项通常定义为 0 和 1(或 1 和 1),后续每一项都是前两项的和。 斐波那契数列的定义 斐波那…...

SpringBoot3动态切换数据源

背景 随着公司业务战略的发展,相关的软件服务也逐步的向多元化转变,之前是单纯的拿项目,赚人工钱,现在开始向产品化\服务化转变。最近雷袭又接到一项新的挑战:了解SAAS模型,考虑怎么将公司的产品转换成多租…...

OSPF - 特殊区域

OSPF路由器需要同时维护域内路由、域间路由、外部路由信息数据库。当网络规模不断扩大时,LSDB规模也不断增长。如果某区域不需要为其他区域提供流量中转服务,那么该区域内的路由器就没有必要维护本区域外的链路状态数据库。  OSPF通过划分区域可以减少网…...

Linux 系统下磁盘相关指令:df、du、fdisk、lsblk

文章目录 I df、du、fdisk、lsblk指令df命令用于显示文件系统的磁盘空间使用情况du命令用于估算目录或文件的磁盘空间使用情况fdisk命令用于对磁盘进行分区操作lsblk指令查看设备信息II 应用du估算目录或文件的磁盘空间使用情况lsblk查看服务器上查看硬盘个数III 知识扩展磁盘阵…...

基于单片机的肺功能MVV简单测算

肺功能MVV一般是指肺部每分钟的最大通气量。 MVV本身是最大值的英文缩写,在临床上,肺功能MVV表示肺部每分钟最大通气量,用以衡量气道的通畅度,以及肺部和胸廓的弹性、呼吸肌的力量。 肺部每分钟的最大通气量的参考值男性与女性之…...

如何用Python编程实现自动整理XML发票文件

传统手工整理发票耗时费力且易出错,而 XML 格式发票因其结构化、标准化的特点,为实现发票的自动化整理与保存提供了可能。本文将详细探讨用python来编程实现对 XML 格式的发票进行自动整理。 一、XML 格式发票的特点 结构化数据:XML 格式发票…...

腾讯云AI代码助手编程挑战赛-百事一点通

作品简介 百事通问答是一款功能强大的智能问答工具。它依托海量知识储备,无论你是想了解生活窍门、学习难点,还是工作中的专业疑惑,只需输入问题,就能瞬间获得精准解答,以简洁易懂的方式呈现,随时随地为你…...

Spring学习笔记1

目录 1 什么是spring2 spring的优势3 IOC的概念和作用3.1 无参数构造函数的实例化方式3.2 使用工厂中的普通方法实例化对象 4 Bean4.1 Bean相关概念4.2 Bean对象的作用范围 5 DI5.1 构造函数注入5.2 set方法注入5.3 复杂类型数据注入5.4 基于注解的IOC5.4.1 包扫描5.4.2 Compon…...

LeetCode 2185. Counting Words With a Given Prefix

&#x1f517; https://leetcode.com/problems/counting-words-with-a-given-prefix 题目 给一个字符串数组&#xff0c;返回其中前缀为 pref 的个数 思路 模拟 代码 class Solution { public:int prefixCount(vector<string>& words, string pref) {int count…...

图漾相机基础操作

1.客户端概述 1.1 简介 PercipioViewer是图漾基于Percipio Camport SDK开发的一款看图软件&#xff0c;可实时预览相机输出的深度图、彩色图、IR红外图和点云图,并保存对应数据&#xff0c;还支持查看设备基础信息&#xff0c;在线修改gain、曝光等各种调节相机成像的参数功能…...

前端开发中页面优化的方法

前端页面优化是指通过改进网页的加载速度、提高用户体验和SEO优化等手段来优化页面性能的过程。以下是一些常见的前端页面优化方法&#xff1a; 压缩和合并文件&#xff1a;通过压缩CSS和JavaScript文件&#xff0c;并将多个文件合并成一个文件&#xff0c;减少网络传输和HTTP请…...

Qt QDockWidget详解以及例程

Qt QDockWidget详解以及例程 引言一、基本用法二、深入了解2.1 窗口功能相关2.2 停靠区域限制2.3 在主窗体布局 引言 QDockWidget类提供了一个可以停靠在QMainWindow内的小窗口 (理论上可以在QMainWindow中任意排列)&#xff0c;也可以作为QMainWindow上的顶级窗口浮动 (类似一…...

机器学习之贝叶斯分类器和混淆矩阵可视化

贝叶斯分类器 目录 贝叶斯分类器1 贝叶斯分类器1.1 概念1.2算法理解1.3 算法导入1.4 函数 2 混淆矩阵可视化2.1 概念2.2 理解2.3 函数导入2.4 函数及参数2.5 绘制函数 3 实际预测3.1 数据及理解3.2 代码测试 1 贝叶斯分类器 1.1 概念 贝叶斯分类器是基于贝叶斯定理构建的分类…...

关于大数据的基础知识(一)——定义特征结构要素

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于大数据的基础知识&#xff08;一&a…...

2025 GitCode 开发者冬日嘉年华:AI 与开源的深度交融之旅

在科技的浪潮中&#xff0c;AI 技术与开源探索的火花不断碰撞&#xff0c;催生出无限可能。2025 年 1 月 4 日&#xff0c;由 GitCode 联合 CSDN COC 城市开发者社区精心打造的开年首场开发者活动&#xff1a;冬日嘉年华在北京中关村 • 鼎好 DH3-A 座 22 层盛大举行&#xff0…...

【MyBatis-Plus 进阶功能】开发中常用场景剖析

MyBatis-Plus&#xff08;MP&#xff09;除了封装常见的 CRUD 操作&#xff0c;还提供了一些高级功能&#xff0c;进一步简化复杂场景下的开发工作。本文将逐一讲解 逻辑删除、自动填充、多表关联查询的原理与使用方式&#xff0c;让你快速掌握这些技巧&#xff01; 一、逻辑删…...

【C++/控制台】2048小游戏

源代码&#xff1a; #include <iostream> #include <windows.h> #include <stdio.h> #include <math.h> #include <stdlib.h> #include <conio.h> #include <time.h>// #define KEY_DOWN(VK_NONAME) ((GetAsyncKeyState(VK_NONAME)…...

Linux 中 top 命令的使用与实例解读

目录 Linux 中 top 命令的使用与实例解读一、top 命令参数二、输出字段含义&#xff08;一&#xff09;系统信息&#xff08;二&#xff09;任务信息&#xff08;三&#xff09;CPU 信息&#xff08;四&#xff09;内存信息 三、实例解读系统信息任务信息CPU信息内存信息进程列…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...